В 1930-х годах Энрико Ферми использовал методы статистической выборки для оценки величин, связанных с контролируемым делением ядра, что можно считать ранним применением идей, лежащих в основе метода Монте-Карло (Mascagni, n.d.)


2. Создание метода (1940-е годы): Проект «Манхэттен». Современный метод Монте-Карло был формализован в 1940-х годах в рамках работы над атомной бомбой в проекте «Манхэттен». Его создателями считаются:

– Станислав Улам: Польский математик, предложивший использовать случайные числа для расчета сложных задач. Идея возникла в 1946 году, когда он пытался рассчитать вероятности в карточной игре «Солитер» (Los Alamos National Laboratory, 2023).

– Джон фон Нейман: Разработал алгоритмы генерации псевдослучайных чисел, необходимые для реализации метода (Los Alamos National Laboratory, 2023).

– Николас Метрополис: Предложил название «Монте-Карло», которое отсылает к знаменитому казино в Монако (Los Alamos National Laboratory, 2023).

Метод использовался для моделирования ядерных реакций, где аналитические методы были слишком сложны.


3. Развитие (1950—1960-е годы): Появление компьютеров. С появлением первых электронных компьютеров, таких как ENIAC, метод Монте-Карло стал практически применимым. Компьютеры позволили выполнять миллионы итераций, что сделало метод эффективным для решения задач:

– в физике (например, моделирование диффузии частиц);

– в инженерии (оптимизация конструкций);

– в математике (численное интегрирование).


4. Расширение областей применения (1970-е годы и далее). Метод стал широко применяться в экономике, финансах, биологии, химии и других областях. Одним из ключевых этапов стало использование метода для моделирования финансовых рисков и прогнозирования цен акций (Boyle, 1977).


5. Современный этап (1990-е годы – наши дни): Высокопроизводительные вычисления. С развитием мощных компьютеров и алгоритмов параллельных вычислений метод Монте-Карло стал основой для:

– вычислений в квантовой физике;

– биомедицинских исследований (например, моделирование распространения лекарств);

– машинного обучения и анализа данных.


В 1990-х годах были разработаны последовательные методы Монте-Карло, которые нашли применение в обработке сигналов и байесовском выводе (Metaplane, 2023). Сегодня метод Монте-Карло остается одним из самых мощных инструментов для решения сложных задач в различных областях науки и техники (Kroese et al., 2014).

Представьте, что мы симулируем карьеры 1000 человек в течение 40 лет. Каждому человеку мы случайным образом задаем уровень способностей и ежегодную «дозу» удачи, влияющую на его продвижение. Проведя симуляцию, мы увидим широкий спектр карьерных результатов. У кого-то карьера стремительно пойдет в гору благодаря удачному стечению обстоятельств. Другие, несмотря на таланты, могут надолго застрять на месте. Анализируя статистику множества смоделированных жизненных путей, мы сможем количественно оценить относительную важность удачи и способностей для достижения выдающегося успеха.

Результаты подобных симуляций часто оказываются неожиданными и даже неприятными. Они показывают, насколько неравномерно могут распределяться плоды успеха даже в группе людей с изначально схожими способностями. Самые впечатляющие взлеты часто происходят не только благодаря таланту и упорству, но и немалой доле везения. Осознание этого факта может в корне изменить наше восприятие «звезд» в различных областях – бизнесе, науке, искусстве. Быть может, они не столько исключительные гении, восхождение которых было предопределено, сколько счастливчики, оказавшиеся в нужное время в нужном месте?