После этого при закрытой центральной скважине 1 начинают нагнетать одновременно во все или последовательно в несколько периферийных скважин 2. Одновременность или последовательность задействования периферийных скважин зависит от наличия на участке технических средств по закачке воды под высоким давлением. Расход воды на каждую периферийную скважину должен составлять до 1,5–2,0 м>3/мин
После стабилизации давления на скважинах 2 открывают центральную скважину 1 в атмосферу и начинают промывку коллектора водой. При этом периодически переходят с закачки воды на нагнетание воздуха. Эта операция содействует расширению щели гидроразрыва, в первую очередь, в зоне, прилегающей к периферийным скважинам 2. Угольная мелочь выносится из открытой центральной скважины 1. Эта стадия технологического регламента представлена на рис. 8 (в) зонами 4, ограниченными сплошными линиями.
Количество вынесенной угольной мелочи из скважины 1 соответствует объему созданного в пласте искусственного коллектора и позволяет оценить его дренирующую способность.
В результате осуществления перечисленной технологической последовательности практически вся площадь, оконтуренная периферийными скважинами 2 (за исключением площади, не охваченной пунктирными и сплошными линиями в зонах 3 и 4), оказывается эффективно разупорядоченной и характеризуется высокой дренирующей способностью. Приток воды и метана в нее высок, после откачки воды можно ожидать извлечение из искусственно созданного коллектора более 1000 м>3/ч угольного метана.
Возможно сочетание вертикальных и горизонтальных скважин, осуществление через них воздействия не только на угольный пласт, но и на его почву и кровлю (соответственно, подработка и надработка угольного пласта). Разгрузка угленосного массива от горного давления будет активно содействовать его метаноотдаче.
Перечисленные выше способы создания протяженных искусственных коллекторов при подземной газификации угольных пластов могут успешно использоваться для извлечения через них угольного метана.
1.5.4. Протяженные буровые каналы
Второй перспективной технологией создания коллекторов с развитой боковой поверхностью является применение протяженных направленных буровых каналов по угольному пласту.
Использование таких буровых каналов для дегазации угольных пластов уже само по себе перспективно, так как по величине поверхности фильтрации для угольного метана они соизмеримы со щелями гидроразрыва.
Главные направления совершенствования технологии извлечения угольного метана через скважины хорошо проявляются при анализе линейного закона фильтрации Дарси (формула Дюпюи):
(3)
где Q – дебит флюида при нагнетании или извлечении, см>3/с;
k – коэффициент газопроницаемости, Д;
l>k – длина вскрытого забоя скважины, см;
Р>1 – давление на контуре области питания, кг/см>2;
Р>0 – давление флюида в скважине, кг/см>2;
µ – вязкость флюида, сП;
R – радиус контура питания, м;
r>k – радиус скважины, м.
В соответствии с этим выражением, дебит метана в канал прямо пропорционален его длине, поэтому протяженные горизонтальные буровые каналы по угольному пласту вполне оправданы. Значимость радиуса канала ограничена, поэтому диаметр бурения не имеет принципиального значения. Расстояние до контура питания измеряется сотнями метров. Если пробурить скважину вблизи места скопления метана или трещиноватой зоны, то есть уменьшить расстояние до контура питания в сотни раз, то можно существенно увеличить приток метана в канал. Особое значение имеет величина газопроницаемости угольного пласта, измеряемая на глубине 1000 м всего 0,01–0,001 мД. Поэтому любые методы увеличения газопроницаемости угольного пласта заслуживают пристального внимания.