На западе Канады верхнемеловые сланцы содержат обогащенный метаном газ (при естественной температуре всего + 62 °C). В этом случае явная причина образования метана – каталитический крекинг на минеральных катализаторах и соединениях переходных металлов.

По последним данным исследований физико-химической структуры газоугольной матрицы метаноугольных пластов, метан в них содержится в трех состояниях: свободном, адсорбированном и твердом растворе [28]. При этом в твердом растворе содержится 70 % всего метана угольного пласта, и выделение его из твердой матрицы угля наиболее сложно и продолжительно по времени.

Несмотря на дискуссионность этой теории, нет сомнений, что только свободный метан легко извлекаем с помощью простых буровых каналов. Адсорбированный метан, а тем более метан, находящийся в твердом растворе, не могут быть извлечены такими элементарными способами. Для этого необходимы более эффективные технологии разрыва физико-химических связей метана с угольной матрицей и разгрузки угольного пласта.

Ниже излагаются некоторые инновационные технические решения воздействия на угольный пласт с целью интенсификации извлечения угольного метана.

1.3. Зарубежный опыт

Для предотвращения выделения метана в горные выработки угольных шахт в большинстве угледобывающих стран мира (США, КНР, Российская Федерация, ФРГ, Польша, Великобритания и др.) широко применяют дегазацию угольных пластов и участков природного скопления свободного метана.

Среди известных примеров шахтной дегазации разрабатываемых угольных месторождений можно отметить следующие [29].

В ФРГ на шахте «Луизенталь» (глубина 800 м) дегазацию газосодержащих толщ проводили вертикальными скважинами, пробуренными с поверхности. За 8 лет было каптировано 23,4 млн м>3 метана, в том числе 1,84 млн м>3 (в среднем 630 м>3/сут.) до начала проведения горных работ. Эффективность дегазации шахты последовательно вертикальными скважинами, пробуренными с поверхности, и подземными скважинами составила 80 % (каптировано вертикальными скважинами – 11 млн м>3 метана, подземными скважинами – 1,5 млн м>3 метана, 3 млн м>3 метана выделилось в выработки шахты).

В КНР на антрацитовой шахте «Янцюань» (провинция Шаньси) при разработке свиты пологих пластов мощностью от 0,8 до 11 м и общешахтном выделении метана 240 м>3/мин для дегазации заполненных метаном карстовых пустот бурили скважины с поверхности глубиной до 400 м, с расстоянием между соседними скважинами 50–70 м. Дебит каптированного метана составил 30–33 м>3/мин, что обеспечило эффективность дегазации карстовых пород до 80–85 %. За 25 лет было извлечено 360 млн м>3 метана (в среднем 39 тыс м>3/сут.).

В США на шахте «Федерал» применяли дегазацию пласта «Питтсбург» направленными скважинами с поверхности. Вертикальные скважины бурили до глубины 300–350 м, а затем из их забоев бурили по пласту веер из трех скважин суммарной длиной до 2000 м. Среднесуточный дебит метана за 880 сут. составил 44 тыс м>3. При общих капитальных и эксплуатационных затратах $1,5 млн и извлечении 9,2 млн м>3 метана/год каптаж 1000 м>3 обошелся в $2,05 млн. Затраты на бурение и оборудование скважин окупились за 4 года. Эффективность дегазации выемочного участка составила 40 %.

Промышленную добычу метана из углегазовых месторождений наиболее эффективно осуществляли в США, начиная с восьмидесятых годов двадцатого века. В последнее время появились новые сведения об успехах во внешахтной дегазации угольных месторождений Австралии и Китая.

Остановимся более детально на результатах промысловой (заблаговременной) добычи метана.