Каспар Шотт – немецкий математик и физик смог сделать устройство, адаптированное к приложениям на основе Палочек, названное им Organum Mathematicum и описанное им в одноименной книге в 1668 году.
Орган состоит из 9 секций по 24 палочке в каждой:
• Арифметическая – набор традиционных палочек Неппера
• Геометрическая – упрощает вычисление геометрических характеристик
• Фортификационная – служит для расчета размеров крепостных сооружений
• Хронологическая – предназначена для вычисления даты Пасхи и других церковных праздников
• Хроногафическая – для поддержки солнечных часов
• Астрономическая – содержит данные о продолжительности дня и ночи, время восхода и заката и подобное
• Астрологическая – данные о движении планет и созвездий
• Криптографическая – для кодирования и декодирования текстов с использованием циклических шифров
• Музыкальная – содержит отдельные музыкальные фразы, которые можно сочетать
Как и многие аналогичные устройства Орган широкого распространения не получил, но несколько неавторских экземпляров сохранились и демонстрируются в европейских музеях.
Логарифмическая линейка
Логарифмическая линейка – рекордсмен по долгожительству в мире вычислений. Еще тридцать-сорок лет назад она была обязательным атрибутом инженерной деятельности. Предпосылкой к созданию стала логарифмическая шкала Гюнтера (Gunter’s line of numbers), названная именем Эдмунда Гюнтера, заметившего, что умножение можно заменить сложением логарифмов множителей с использованием логарифмической шкалы. Это можно сделать двумя циркулями-измерителями, измерив ими оба отрезка, соответствующие множителям, а потом сложить на логарифмической шкале и прочитать произведение, способ приближенного умножения быстро распространился по всей Европе. Так был сделан шаг от сектора к линейке.
Создание логарифмической линейки, упрощающей пользование шкалой Гюнтера, связывают с именем английского математика Ульяма Отреда, он предложил конструкцию в виде пары вращающихся дисков (Circle of proportion) в 1630 году. В книге «Круги пропорций», вышедшей в Лондоне в 1632 году, было дано описание круговой логарифмической линейки, в вышедшей через год книге «Дополнение к использованию инструмента, называемого «Кругами пропорций»» описана прямоугольная логарифмическая линейка.
Идея простейшей механизации пользования шкалой Гюнтера, видимо, витала в воздухе, потому что приоритет Отреда оспаривали несколько человек, а том числе и учитель Ричард Деламейн. Весьма показательная ситуация, неоднократно повторявшаяся в истории компьютинга.
Линейка постоянно совершенствовалась, а когда за нее взялся Джеймс Уатт, более известный как изобретатель паровой машины и автоматического регулятора, она приобрела вид близкий к тому, в котором она просуществовала почти три века. Единственное радикальное дополнение в ее конструкцию внес французский артиллерист Амадей Манхейм в 1850 году. Что же касается конкретных исполнений, то линейка дала колоссальный простор для творчества.
Производство линеек прекратилось только во второй половине 70-х годов, количество же выпущенных измеряется сотнями миллионов штук. Материалом для них служило дерево, пластик, дерево, покрытое пластиком, различные металлы. Подавляющее большинство составляли классические прямоугольные конструкции, гораздо меньше круглых и цилиндрических, есть и экзотические экземпляры в том числе с электрическим приводом. Обычно размер линейки находился в пределах от 5 до 50 сантиметров, хотя были и большие настенные демонстрационные, предназначенные для учебных целей. Сегодня линейки стали предметом коллекционирования, наиболее крупные коллекции насчитывают сотни экспонатов. В 2005 году в Стэнфордском университете, одном из ведущих мировых центров компьютерной науки прошла мемориальная выставка с символическим названием «Взлет и падение логарифмической линейки: 350 лет математического калькулятора». Она подытожила долгую жизнь этого несложного, но бывшего столь необходимым человечеству инструмента. В экспозиции были представлены фотографии двух конструкторов – Сергея Королева и Вернера фон Брауна, на них и тот, и другой держат в руках линейки, причем одной и той же немецкой фирмы и одной модели.