Но если Большой Взрыв оказался таким чудесно удачным, то, оглядываясь на нашу практику, возможно сначала были Взрывы катастрофические, и Вселенная много раз капризно «схлопывалась» пока, наконец, не стала благополучно расширяться?
«Запустив» Вселенную, Большой Взрыв обеспечил вечной работой ученых всей земли.
В начале XVII века усилиями Николая Коперника, Галилея, Иоганна Кеплера и их единомышленников утвердилась гелиоцентрическая система мира. Земля, считавшаяся центром мироздания, заняла свое скромное место среди планет солнечной системы. А необъятные просторы Вселенной стали полем научных поисков и открытий.
В конце XVII века Исаак Ньютон опубликовал свои эпохальные «Начала», сформулировал основные законы и понятия механики и открыл закон всемирного тяготения.
Наступил красивый, мечтательный XVIII век. Окружающий мир был научно обоснован, в нем было уютно жить и учить детей законам, отлитым в бронзе, по одному вечному учебнику.
Землю окружало огромное небо. Тепло. Свет. Кружились мистические планеты и мерцали звезды.
Умственный потенциал человечества исподволь готовился к следующему научному броску.
А пока пышно расцвела философия. Родились гении музыки, живописи, поэзии и великой литературы.
В середине XIX века Джеймс Масквелл открыл новый тип фундаментальных законов, определяющих поведение магнитного поля и не сводимых с законами Ньютона.
А в самом начале ХХ века Альберт Эйнштейн опубликовал «Теорию Относительности», в которой поэтические слова «пространство», «время» стали физическими понятиями.
Знаменитое уравнение Эйнштейна: Е = mc>2, связало между собой энергию (Е), массу (m) и скорость света (с) и оказалось, что при скорости, близкой к световой, незыблемая масса увеличивается вдвое. И со временем происходят всякие чудеса: мы на Земле стареем, а человек, слетавший к звездам, должен вернуться таким же молодым.
Скорость света обозначила предел любого движения, за которым энергия и масса теоретически становились бесконечными.
Через десять лет Эйнштейн обосновал «Общую теорию относительности», основанную на революционном предположении, что гравитация не обычная сила, а следствие того, что пространство – время не является плоским, а изогнуто или искривлено помещенными в него массой и энергией.
В 1900 году Макс Планк предположил, что видимый свет, рентгеновские лучи и другие электромагнитные волны могут испускаться только как бы порциями, которые он назвал«квантами».
Эта идея оказалась настолько плодотворной, что привела к развитию целого ряда теорий, в том числе к «квантовой механике», «квантовой теории поля» и, наконец, к открытию Вернером Гейзенбергом принципа неопределенности.
Гейзенберг доказал, что в квантовом мире нельзя одновременно точно измерить и положение, и скорость частицы. Исследователь никак не может удержать равновесие, чем точнее он определяет положение частицы, тем менее точно способен измерить ее скорость – и наоборот.
Из этого следовали разные, далеко идущие выводы: например, то, что мы в некой степени беспомощны в описании Вселенной, поскольку не можем точно определить ее начальную конфигурацию.
Осмысление того, что следует из квантовой теории для понимания Вселенной продолжается до сих пор. А тогда даже Эйнштейн, сам же сыгравший важную роль в становлении квантовой механики, не сразу принял идеи неопределенности, того, что Вселенной как бы управляет случай. Заметив, что «Бог не играет в кости».
Новые теории подвинули механику Ньютона, оставив ее для повседневного, домашнего обихода.
Но в итоге родилось вопросов больше, чем ответов.