Вскоре после аннигиляции (приблизительно в период от 1 до 3 минут после Большого взрыва) температура Вселенной понизилась до 10 млрд. градусов Кельвина (°К), появились условия благоприятные для протекания ядерной реакции образования дейтронов – ядер стабильного изотопа водорода – дейтерия (процесса первичного нуклеосинтеза). В этом процессе часть ядер протия (протонов) объединилась с нейтронами, которых оказалось в 7 раз меньше, чем протонов. Такое объединение привело к появлению ядер стабильного, тяжелого изотопа водорода – дейтерия (1 протон + 1 нейтрон). Наряду с формированием ядер дейтерия, небольшая часть нейтронов израсходовалась на присоединение к дейтерию, что создало ядра сверхтяжелого радиоактивного изотопа водорода – трития, состоящего из протона и двух нейтронов. Наиболее активно синтез дейтерия происходил по истечении трёх минут после Большого взрыва (ПБВ). В это время присоединение к дейтерию по одному протону и одному нейтрону или взаимодействие ядер трития с ядрами дейтерия, или со свободными протонами (ядрами протия) создало ядра гелия (альфа—частицу), состоящие из двух протонов и двух нейтронов. Поскольку исходное соотношение протонов и нейтронов составляло 7:1, то за несколько минут были израсходованы все почти нейтроны, а большая часть протонов (ядер водорода – протия) осталась в свободном состоянии. В первичном нуклеосинтезе кроме дейтерия, трития и гелия-4 образовались такие элементы, как: гелий-3, литий-6, литий-7, бериллий-7, бор-11, углерод, азот и кислород. Нестабильные изотопы тритий и бериллий-7 распались вскоре после первичного нуклеосинтеза с образованием гелия-3 и лития-7, соответственно. Оставшиеся изотопы – дейтерий, гелий-3, литий-7, бор-11, углерод, азот и кислород составляли в веществе настолько незначительную долю, которая никак не повлияла на состав и характер эволюции первых звезд. Однако не следует так пренебрежительно относиться к этим первым тяжелым элементам, памятуя, что в науке о космосе существует неразрешенная проблема – что было вначале: первая пыль или первая звезда? Но об этом поговорим немного позже, когда будем описывать Вселенную в возрасте около 400 тыс. лет.

Спустя приблизительно 3 минуты после Большого взрыва температура уменьшилась настолько, что процесс нуклеосинтеза прекратился. На создание гелия и мизерного объема более тяжелых элементов в процессе термоядерных реакций первичного нуклеосинтеза была израсходована четвертая часть вселенского водорода. Космическое пространство оказалось заполненным ядрами водорода – протия (около 75 % общей массы) и гелия (почти 25 %).

Среди элементов, участвовавших в первичном нуклеосинтезе, оказались не все наши гиды-водороды, а только Карбовеж, Карбомал, Флюор и Ферум. Они удачно столкнулись с нейтронами и превратились в ядра дейтерия (ядро дейтерия, тяжелого водорода – дейтрон – 2H, D). Кроме того, давление и температура во Вселенной в то время были благоприятными для термоядерной реакции, при которой ядра дейтерия превращались в ядра гелия-4. Поэтому Карбовеж, Карбомал, Флюор и Ферум, будучи ядрами дейтерия, смогли соединиться со свободными ядрами трития. В результате на их основе образовались ядра гелия-4, которые состоят из 2 протонов и 2 нейтронов. Так как масса гелия меньше, чем сумма масс четырёх свободных протонов, то часть массы в этой реакции перешла в энергию фотонов. Гидрожен, Оксижен и Нитрожен оказались в менее насыщенной частицами части плазменного скопления, и поэтому им не удалось встретиться в космосе с другими элементами и сменить прежнюю форму своего существования на более сложную. Они продолжали свои космические одиссеи в форме стабильного изотопа водорода – протия (ядро протия – 1H: 1 протон и 0 нейтрон). Все наши гиды путешественники на протяжении последующих нескольких сотен миллионов лет находились в одном из локальных сгущений плазмы. Поэтому они не разбрелись по просторам космоса, несмотря на то, что расстояния между плазменными облаками неимоверно быстро увеличивались за счет быстрого расширения Вселенной.