Казалось бы, что время роста сети с точностью до года – это абсурд. Но смысл предлагаемой здесь гипотезы в том, что все стадии и этапы эволюции человека (и не только человека) определяются ростом иерархической сети. Мы считаем, что время начала каждого цикла должно выражаться с «абсолютной» точностью.


Запишем это в системе MathCAD:


Рис. 3. Сравнение гиперболы Мак-Эведи и Джоунса с теоретической гиперболой при k = 1.0, k = 1.1, k = 1.2 (k эомби-коэффициент) на временах от начала неолита до 1982 года.


При k =1.1 теоретическая гипербола сливается с гиперболой Мак-Эведи и Джоунса. Сравним теперь теоретическую гиперболу (k = 1.1) с гиперболами Форстера и Хорнера за последние два столетия:


Рис. 4. Зависимость численности Земли за последние два столетия для гипербол Форстера, Хорнера и теоретической гиперболы.


Теоретическая гипербола практически сливается с гиперболой Хорнера. Итог таков: предложенная модель на интервале от -8154 до 1982 года согласуется с демографическими данными так же хорошо, как и все эмпирические гиперболы роста населения Земли. Главный же вывод состоит в том, что предложенная модель описывает рост населения Земли в точном соответствии с демографическими данными на всем протяжении истории развития человечества.


При этом сама гиперболическая зависимость, константы Капицы К и τ, а также постоянная Форстера С выводятся из идеальной математической схемы и космологических данных (Tu = 13.81 млрд лет) без всякой связи с работами Форстера и Капицы.


Теперь о точности теоретической зависимости. Прежде всего, важно еще раз отметить то, что теоретическая гипербола – это точечная функция и областью ее определения и множеством значений являются 256 фиксированных значений.

Согласно первому закону Сети точные значения числа носителей могут быть получены только в точках сетки, образованной обратным отсчетом времени от 1982 года в прошлое с шагом τ = 39.75 года. (Речь здесь идет о приоритете роста по циклам, который может и нарушаться для предотвращения сбоя по гармоническим и тем более совершенным стадиям роста Сети, обладающим бо́льшим приоритетом.)

Внутри же циклов значения теоретической функции могут быть лишь интерполированы. Причем результаты этой интерполяции как теоретические данные могут быть неточны и даже ошибочны. Эта математика хорошо соответствует закону роста, который не обязывает население мира расти в точности по закону гиперболы, а лишь расставляет систему приоритетов: значений численности носителей в начале и в конце каждого цикла, а также в предзаданные моменты гармонического достижения.

Кроме того, следует помнить, что зомби-коэффициент k, учитывающий народонаселение, неспособное выступать в качестве носителей Сети, который мы ввели как величину неизменную и равную 1.1, на самом деле менялся (видимо уменьшался) на протяжении всей истории развития человечества. Поэтому, когда возникает вопрос о том, какова была численность населения Земли, скажем, в 1370 году – не следует забывать про все эти оговорки при оценке возможной погрешности.

Последний цикл роста Сети

Он особенный, ведь за время его прохождения прирост носителей был таким же, как за все предыдущие 42396 циклов. Это был последний переход Сети человека от самой большой гармонической сети к сети совершенной. Начался он в 1942 году и закончился в 1982-м.

Самый бурный и неповторимый этап развития прошла и Мир-система. Атомная энергия, генетика, космос, телевидение, компьютеры… И это несмотря на вторую мировую войну и риск развязывания третьей.

Первая половина цикла – замедление роста, перегиб, спад; вторая половина – быстрый взлет с последующей стагнацией скорости роста. Динамику роста численности внутри этого цикла предложенная гипотеза не объясняет (и не должна).