Представляется удивительным и символическим, что одно из решений проблемы компьютерного моделирования квантовой механики предлагает сама квантовая физика, посдавшая идею создания совершенно нового типа вычислительных устройств (квантовых компьютеров), позволяющих фантастически повысить быстродействие и другие характеристики компьютеров. Более того, принцип действия квантового моделирования напоминает поведение естественных систем, то есть позволяет буквально обойти препятствия традиционной вычислительной техники за счет квантовых эффектов! Можно лишь надеяться, что как только такие квантовые компьютеры будут реально созданы, то именно их начнут использовать ученые для немыслимо сложных расчетов характеристик наномасштабных объектов. На этой стадии нанотехнология станет напоминать современное моделирование и проектирование авиационно-космической техники, которое уже сейчас может осуществляться виртуально, то есть без использования данных, получаемых экспериментально в аэродинамических трубах или их химических аналогах.

На первый взгляд ситуация кажется странной и необычной, но, в сущности, она является совершенно естественной. Обычные компьютеры очень удобны для расчета привычных макроскопических (то есть не квантовых) систем, например автомобилей или самолетов, а для моделирования квантовых систем мы должны придумать и создать именно квантовые компьютеры! Каждый уровень реальности должен описываться собственным языком и собственным типом компьютеров!

Одна из компаний, нацеленных на создание квантовых компьютеров, сейчас пытается заменить кремниевые технологии алюминиевыми, и очень надеется, что в 2008 году сможет сконструировать вычислительную схему размером с ноготь, превосходящую по мощности все существующие на планете компьютеры вместе взятые. Возможно, подобные устройства смогут действительно решать задачи квантовой механики и позволят нам поставить проектирование наносистем и нанообъектов на промышленную основу, что будет означать принципиально новую стадию в развитии нанотехнологий. Потенциальные возможности квантовых компьютеров представляются настолько фантастическими, что профессор Оксфордского университета Дэвид Дейч даже заявил: «Квантовые компьютеры будут способны решать задачи, на которые современным ЭВМ потребовалось бы время, превосходящее возраст Вселенной!»

Иногда утверждается, что каждый физический эксперимент может быть сведен к сложной процедуре расчета, и для подтверждения (или реализации!) этой точки зрения квантовые компьютеры совершенно необходимы расширения действия закона Мура на квантовые (нанометровые) объекты. С другой стороны, продолжаются и должны продолжаться научные эксперименты в этой области. Стоит особо отметить, что вплоть до самого последнего времени методы создания новых функциональных материалов практически не отличались от тех, которыми руководствовались ученые сотни лет назад. Создание новых материалов и сейчас в огромной степени зависит от личного мастерства и искусства ученого, обычно интуитивно угадывающего удачное сочетание компонент из немыслимого множества вариантов, а затем старательно исследующего и улучшающего полученное вещество. Неожиданные открытия в этой области обычно требуют нескольких лет изнурительного труда!

Некоторые компании (Affimetrix, Intematix и Symyx) предложили новый методологический подход к решению описываемых задач, который может быть назван «массовым экспериментированием». Метод фактически означает применение в материаловедении давно используемого химиками и фармацевтами скрининга, то есть массового обследования веществ с заданной целью. Новый подход с комбинированием огромного числа компонент уже доказал свою высокую эффективность, позволяя получать новые материалы в 100 раз быстрее, чем по традиционным методам. Указанным фирмам уже удалось разработать таким способом некоторые материалы для топливных элементов, батарей, полупроводниковой техники, светоизлучающих диодов и т. п.