Можем ли мы использовать столь сложные процессы в молекулярной электронике и нанотехнологии вообще? В чем состоит их привлекательность для ученых и технологов? Прежде всего, использование биологических процессов дает нам возможность быстро находить новые технические решения, пользуясь уже созданными природой рецептами и компонентами. Биология предоставляет нам огромный выбор самых разнообразных «заготовок» в виде молекул и субсистем, которые уже сейчас используются для совершенно иных целей. Ниже приводятся удачные примеры инженернотехнического применения биологических систем.

Например, специалистам НАСА из Центра имени Эймса удалось выделить самоорганизующиеся белки из так называемых термофильных бактерий и, подвергнув их генетической модификации, создать на их основе абсолютно новое техническое устройство. Белки были осаждены на электродах таким образом, что из них образовалась регулярная решетка, или сетка (с промежутками в 17 нм), которая оказалась очень удобной средой для магнитной записи информации в дисководах или для производства солнечных батарей.

Сотрудники Массачусетского технологического института методом искусственной, ускоренной эволюции смогли не только быстро вывести новые штаммы бактериофага М13, но и инфицировать этими штаммами бактерии, в результате чего последние неожиданно оказались способны перерабатывать полупроводниковые материалы, изменяя их структуру с молекулярной точностью.

Крейг Вентер и Гамильтон Смит из Института альтернативной биологической энергетики (Institute for Biological Energy Alternatives, IBEA) в настоящее время осуществляют интересный проект под названием «минимальный геном» (Minimal Genome Project). Им удалось выделить из мочеполового тракта человек микроорганизм Mycoplasma genitalium и удалить из него 200 «бесполезных» генов, после чего в их распоряжении оказался как бы простейший организм, способный к саморепликации (заинтересовавшийся читатель может более подробно ознакомиться с этой работой по статье «Неестественный отбор» в газете «Время новостей» зот 03.07.2007. Прим. перев.). Сейчас исследователи пытаются использовать созданный искусственный геном в технических целях, придавая ему новые функциональные способности, позволяющие, например, получать водород при фотолизе воды под воздействием солнечного света.

Основные трудности в разработках, связанных с процессами «снизу вверх», обусловлены тем, что мы плохо понимаем закономерности явлений в этих микроскопических, но очень сложных системах, и нас может утешать лишь наблюдаемое в последние годы стремительное накопление экспериментальных и теоретических данных о них. Бурное развитие нанонауки привело к тому, что за последнее десятилетие в некоторых разделах генетики и медицины было получено больше сведений, чем за всю предыдущую историю науки. Кстати, упомянутый выше проект изучения микробов с минимальным геномом имеет особую ценность для биологии, поскольку с его помощью ученые надеются понять принципиально важный для биологии в целом механизм функционирования целостной протеомы и ее метаболизма. Дело в том, что действие генетического кода человека является исключительно сложным и связано с очень запутанной системой обратных связей, вследствие чего ученые надеются разгадать некоторые его тайны, пользуясь такими простейшими организмами, построенными по принципу «один ген – один белок».

4.4.5.3. Поучительный пример – гибридная молекулярная электроника

В ближайшие годы сразу несколько фирм приступят к реализации проектов, нацеленных на объединение достоинств обоих описанных выше подходов. Речь идет о попытках практически организовать самосборку органических молекул по принципу «снизу вверх» на изготовленных методами «сверху вниз» кристаллических подложках. Заранее подготовив некоторые участки подложек для самосборки, технологи надеются получить коммерческую продукцию, большим преимуществом которой будет наличие уже сформированного рынка.