Перед нами уже задача, имеющая определенную незначительную сложность. Эту сложность можно увеличить, если употребить комбинацию законов, запутать картину хитрыми зависимостями. В то же время такую сложность легко оценить, если точно установить все необходимые для получения ответа действия и последовательность их выполнения. Для этого можно, например, воспользоваться принципом, предложенным нами раньше (Корнилов, 1967, 1970), и записать решение в виде цепочки действий. При оценке такой – математической – трудности задачи оказываются существенными число элементов, шагов и ветвей в цепочке, наличие в ней величин, которые в окончательной формуле сокращаются и в условии не даны, возможность получить искомое в явном виде и другие характеристики (Корнилов, 1970).
2. Однако автор может не остановиться на таком варианте задачи, пойти дальше и воплотить абстрактно сформированное явление в конкретном процессе. Ясно, что таких конкретных воплощений может быть бесчисленное множество, причем каждый случай можно наделить разными качественными и количественными характеристиками. Пусть в нашем случае автор выбрал воздух, запертый в трубке столбиком ртути. Теперь можно, выбрав сечение трубки и рассчитав длину воздушного и ртутного столбов, сочинить задачу, в которой изменение положения трубки (с вертикального на горизонтальное, например) приводит к изменению давления, а значит – и объема воздуха. Числовые данные позволят, проделав те же, что и раньше, действия, определить искомый второй объем.
Новая «конкретная» задача, безусловно, сложней предыдущего ее варианта, хотя математическая сложность ее не изменилась. Дело в том, что это уже не идеализированный объект (идеальный газ, плоскость, материальная точка и т. п.), строго подчиняющийся всем законам, имеющий математически точные и определенные размеры и т. д. Теперь перед нами реальный газ, в материальном сосуде, в обычных условиях. Еще не ясно, будет ли этот газ подчиняться закону (это надо уточнить или хотя бы постулировать), так ли неизменна температура, как этого требует закон Бойля-Мариотта, неизменно ли сечение трубки, не влияют ли другие, сопутствующие явления (например, пары ртути) и т. п. Автор чрезвычайно усложнил задачу, конкретизировав ее, включив в жизненную ситуацию, сделал ее физически бесконечно богатой, поэтому и обратный переход, который необходим для математического решения задачи, от этой стадии к предыдущей, абстрактной, очень сложен.
Но перед нами еще не задача. Описываемая стадия еще находится в голове автора. Изложение словами неизбежно внесет свои специфические, дополнительные трудности в задачу, так как представляет собой вторую перекодировку – с языка внутреннего на язык разговорный. Первая из названных трудностей будет вызвана тем, что разговорный язык отличается неопределенностью, многозначностью. За каждым словом и выражением разговорного языка может стоять различная сущность, смысл слов и выражений выявляется достаточно четко только при условии учета всего содержания задачи и привлечения необходимых здесь знаний как из области физики, так и из области логики, математики, при условии опоры на опыт чтения любого текста и текста физического (знания из области построения фраз и предложений). Скорее всего, жизненный опыт, практика общения через речь, физические и другие необходимые знания у автора и ученика будут различными, и это внесет дополнительные расхождения в понимание составленного текста автором и учеником (Жинкин, 1956; Ерастов, 1968).