Развернув листочек, дети видят две прямые линии, по которым его складывали – они делят лист на 4 части.
Далее учитель рассказывает, что слово «прямоугольный», т.е. расположенный под прямым углом происходит от древнегреческого слова «ортогональный» (перпендикулярный). Рассказывает о перпендикуляре и о том внимании, которое уделяли древнегреческие мудрецы осмыслению ортогональной зависимости. При этом обязательно ставит ударение на том, что понятие ортогонального важно не столько само по себе, сколько в контексте его взаимной связи с ритмами, циклами, колебаниями, волнами. Отображать суть этих ритмов на бумаге помогает геометрическая модель – окружность.
Далее учитель объясняет, как вычерчивается окружность и показывает для этого специальный инструмент – циркуль. Отмечает, что в момент работы циркуля, ножка в которой закреплена игла, стоит на одном месте. Эту точку называют центром окружности. Другая ножка циркуля движется, и её конец вычерчивает линию, которую и называют окружностью.
Затем учащихся знакомят с радиусом окружности. Для этого на окружности отмечают какую-нибудь точку и соединяют ее отрезком с центром. Отрезок, соединяющий точку на окружности с центром, называют радиусом.
Связывая прямые углы с окружностью или с ее частью, учитель показывает различие между «Ортогональным» Пифагора и «Ортогональным» Гераклита. Объясняет, почему при помощи ортогонального Пифагора отображается взаимодействие двух ортогональных сторон. Тогда как при помощи ортогонального Гераклита отображается колебание, как взаимодействие четырех сторон – двух пар противоположностей, раскрывающих причину всех циклических движений.
Поэтому на ортогональное надо смотреть как на тот оселок, на котором испытывается разум и мудрость, проявляется их зрелое отличие от рассудка. Не случайно, что две революции в философии, сознавая это или нет, жестко сражались за и против утверждения этой абстракции в мышлении.
Рис. 3. Ортогональное Пифагора и ортогональное Гераклита
По этой теме можно организовать игру «Назовите слово, ортогональное по значению». Учитель говорит: «День». Ученики называют слово, ортогональное по значению: «Вечер» и (или) «Утро», «Зима» – «Весна» и (или) «Осень». «Север»…
Рис. 4. Теллурий (Модель Солнце-Земля-Луна)
Источник: http://newstyle-y.ru/school/ucheb/astronomija/modeli/item_2799/
Следующий урок предназначен для детей, положим, 2-го или 3-го класса. На уроке проводится работа с теллурием – прибором для наглядной демонстрации годового движения Земли вокруг Солнца и суточного вращения Земли вокруг своей оси. Тема урока называется: «Смена дня и ночи». Его цель: объяснить детям связь смены дня и ночи с вращением Земли вокруг своей оси.
Учитель объясняет, что в то время, когда Земля вращается вокруг своей оси, она поворачивается к Солнцу разной стороной. Посмотрите, показывает на прибор учитель и скажите: в тот момент, когда Солнце освещает одну половину Земли, какое там время суток? (день). – А какое время суток на той половине, которая находится в тени, и не освещена Солнцем? (ночь). Может ли Солнце, задает новый вопрос учитель, осветить Землю сразу со всех сторон? Нет, отвечают дети.
Учитель объясняет, что такое год – это то время, за какое Земля облетает один раз вокруг Солнца. Он длится 365 дней. Далее объясняет, что год делится на четыре ортогональных сезона и называет их: зима, весна, лето, осень. Объясняет, что такое месяц и сколько месяцев в году (12). Просит детей их назвать. Объясняет, что такое сутки – это время, за которое Земля совершает один полный оборот вокруг своей оси (за 24 часа). Как нечто целое сутки, опять таки, делятся на четыре одинаковые по времени части. И все это учитель связывает с понятием «ортогональное» Гераклита.