Замечательная особенность решений Фридмана состоит в том, что они устанавливают простую связь между геометрией Вселенной и ее конечной судьбой. Если Вселенная замкнутая, она должна вновь сколлапсировать, а если открытая или плоская, то будет расширяться вечно. В своих статьях Фридман не отдавал предпочтения ни одной из моделей.[9]


Рис. 3.2. Двумерный аналог открытой вселенной.


К сожалению, Фридман не увидел, как его работа стала основанием современной космологии. Он умер от брюшного тифа в 1925 году в возрасте 37 лет. И хотя его статьи были опубликованы в ведущем немецком физическом журнале, на них почти не обратили внимания.[10] Они были извлечены из небытия лишь в 1930-х годах, вслед за открытием Хабблом расширения Вселенной.[11]

Момент творения

Что бы ни говорили решения Фридмана о будущем Вселенной, самая неожиданная и интригующая их особенность – наличие начальной сингулярности, Большого взрыва, где перестает работать математика общей теории относительности. В сингулярности вещество сжимается до бесконечной плотности, и становится невозможно распространить решение на более ранние моменты времени. Таким образом, если воспринимать все буквально, Большой взрыв должен рассматриваться как начало Вселенной. Было ли это сотворением мира? Возможно ли, чтобы целая Вселенная началась с единственного события, случившегося конечное время назад?

Для большинства физиков это было чересчур. Такой одномоментный старт Вселенной выглядел как божественное вмешательство, которому, по их мнению, не должно быть места в физической теории. Но хотя для многих ученых “начало мира” было – и в большой мере остается – источником дискомфорта, оно дает и некоторые преимущества. Оно помогает избавиться от парадоксов, которыми полна картина статической, вечной и неизменной Вселенной.

Для начала, вечность Вселенной, по-видимому, противоречит одному из самых фундаментальных законов природы – второму началу термодинамики. Этот закон гласит, что физические системы эволюционируют от более упорядоченных состояний к менее упорядоченным. Если тщательно разложить бумаги по стопкам на столе и в окно неожиданно дунет порыв ветра, листы будут беспорядочно разбросаны по полу. Но вы никогда не увидите, чтобы ветер поднял бумаги с пола и сложил их аккуратными стопками на столе. Такое спонтанное уменьшение беспорядка не является принципиально невозможным, но оно настолько маловероятно, что увидеть подобное никогда не удается.

Математически степень беспорядка характеризуется величиной, называемой энтропией, а второе начало термодинамики говорит, что энтропия изолированной системы может только возрастать. Неуклонное возрастание беспорядка ведет в конце концов к состоянию максимально возможной энтропии, которое называется тепловым равновесием. В этом состоянии вся энергия упорядоченного движения превращается в тепло, и по всей системе устанавливается одинаковая температура.

На космические следствия второго начала термодинамики впервые указал немецкий физик Герман фон Гельмгольц в середине XIX века. Он отметил, что вся Вселенная может рассматриваться как изолированная система (поскольку по отношению к Вселенной не существует ничего внешнего). А раз так, то к Вселенной как к целому применимо второе начало термодинамики, и она должна неотвратимо приближаться к “тепловой смерти” – состоянию термодинамического равновесия. В этом состоянии звезды умрут и будут иметь одинаковую температуру с окружающей средой, а все движения, кроме беспорядочной тепловой толкотни молекул, остановятся.

Еще одно следствие второго начала термодинамики состоит в том, что если Вселенная вечна, то она должна была уже достичь термодинамического равновесия. И раз мы не находимся в состоянии максимальной энтропии, значит, Вселенная не могла существовать всегда.