Равномерное движение частиц в отсутствие гравитации представляется прямыми линиями в пространстве-времени. Но гравитация заставляет частицы отклоняться от этих простых траекторий, так что мировые линии перестают быть прямыми. Это привело Эйнштейна к поистине удивительной гипотезе, что даже отклоняющиеся частицы с искривленными мировыми линиями могут по-прежнему следовать самому прямому возможному пути в пространстве-времени, но само оно должно быть искривлено вблизи массивных тел. Тогда гравитация – не что иное, как кривизна пространства-времени!
Искажение геометрии пространства-времени массивным телом можно проиллюстрировать на примере тяжелого предмета, лежащего на горизонтально натянутом резиновом листе (рис. 2.1). Поверхность резины искривляется вблизи предмета, подобно тому как пространство-время искривляется вокруг гравитирующего тела. Если вы попробуете сыграть в бильярд на этом резиновом листе, то обнаружите, что шары отклоняются на искривленной поверхности, особенно когда проходят вблизи больших масс. Эта аналогия не идеальна: она иллюстрирует только искривление пространства, а не пространства-времени, но позволяет уловить суть идеи.
Рис. 2.1. Массивное тело вызывает искривление пространства.
Больше трех лет поистине героических усилий потребовалось Эйнштейну, чтобы облечь эти идеи в математическую форму. Уравнения новой теории, которую он назвал общей теорией относительности, связывают геометрию пространства-времени и материальное наполнение Вселенной. В случае медленных движений и не очень сильных гравитационных полей эта теория повторяла закон тяготения Ньютона, согласно которому тяготение обратно пропорционально квадрату расстояния. Была также небольшая поправка к этому закону, совершенно ничтожная для движения всех планет, кроме самого близкого к Солнцу Меркурия. Эта поправка вызывала медленную прецессию, то есть смещение его орбиты. Астрономические наблюдения действительно показывали едва заметную прецессию, которая в ньютоновской теории оставалась необъясненной, но находилась в идеальном согласии с вычислениями Эйнштейна. Именно это дало ему уверенность в том, что теория верна. “Я несколько дней был вне себя от восторга”, – писал он своему другу Паулю Эренфесту.[3]
Возможно, самая замечательная черта общей теории относительности – то, как мало она требует экспериментальных предпосылок. Ключевой факт, который Эйнштейн положил в основу своей теории, – то, что движение тел под действием гравитации не зависит от их массы, – был известен уже Галилею. На этой скромной основе он построил теорию, которая в соответствующем предельном случае воспроизводила закон всемирного тяготения Ньютона и объясняла отклонение от этого закона. Если задуматься, закон Ньютона в известном смысле произволен. Он постулирует, что сила притяжения двух тел обратно пропорциональна второй степени расстояния между ними, но не говорит почему. С равным успехом там могла быть степень 4 или 2,03. В противоположность этому общая теория относительности не оставляет свободы выбора. Представление гравитации как кривизны пространства-времени с неизбежностью ведет к уравнениям Эйнштейна, а из них вытекает закон обратных квадратов. В этом смысле теория относительности не описывает, а