Такие алгоритмические рекомендации напоминают полки, расположенные непосредственно перед кассой в супермаркетах, – последний стимул купить товары, которые могут вам пригодиться. Но в данном случае рекомендации подбирались индивидуально для каждого пользователя сайта, и в результате, как утверждала статья, получался “магазин для каждого покупателя”. Amazon обнаружила, что персонализированные рекомендации товаров гораздо эффективнее с точки зрения количества кликов и продаж, чем неперсонализированные методы маркетинга – например, реклама на баннерах и списки наиболее популярных товаров, которые нельзя нацелить столь же точно. Алгоритм рекомендаций продвигал бизнес и оказался удобен для покупателя, который получил возможность находить вещи, о необходимости которых даже не подозревал. (Прямо сейчас главная страница Amazon рекомендует мне мойку с аккумуляторным питанием и японскую сковороду для омлета.)

Первые подобные алгоритмы сортировали отдельные электронные письма, музыкантов (в отличие от конкретных песен), веб-страницы и коммерческие товары. По мере развития цифровых платформ рекомендательные системы переместились в более сложные области культуры и стали оперировать гораздо большими скоростями и объемами, обрабатывая миллионы твитов, фильмов, загруженных пользователями видеороликов и даже потенциальных партнеров на свиданиях. Фильтрация стала стандартным способом работы в интернете.

Эта история напоминает также о том, что рекомендательные системы – это не всезнающие сущности, а инструменты, созданные группами технических специалистов. Они могут ошибаться. Ник Сивер – социолог и профессор Университета Тафтса, изучающий рекомендательные системы. Его исследования посвящены человеческой стороне алгоритмов – тому, что думают об алгоритмических рекомендациях создающие их инженеры. В наших беседах Сивер всегда старался прояснить двусмысленную суть алгоритма, отделяя индивидуальное уравнение от корпоративных мотивов, лежащих в основе его разработки, и конечного воздействия на пользователя. “Алгоритм – это метонимическое обозначение для компаний в целом, – говорил он мне. – Алгоритма Фейсбука не существует; существует Фейсбук. Алгоритм – это способ рассказать о решениях Фейсбука”.

Речь здесь не о технологии – нельзя обвинять сам алгоритм в плохих рекомендациях, как нельзя обвинять мост в его инженерных недостатках. Чтобы огромные хранилища контента на цифровых платформах стали доступными, необходима определенная степень упорядочивания. Негативные аспекты Мира-фильтра, возможно, возникли потому, что технология применяется слишком широко, учитывая скорее интересы рекламодателей, нежели опыт пользователей. Рекомендации в том виде, в котором они сейчас существуют, больше не работают для нас; они вызывают у нас все большее отчуждение.

Первые социальные сети

Мои первые значимые воспоминания о социальных сетях связаны с Фейсбуком, в котором я зарегистрировался после того, как поступил в колледж при Университете Тафтса. Дело было летом 2006 года, и в то время потенциальным пользователям требовался официальный адрес электронной почты в домене. edu, чтобы получить доступ к части платформы, которая относилась к колледжам. Тот первый вариант Фейсбука почти неузнаваем по сравнению с сегодняшней структурой. Аудитория строго ограничивалась; я использовал сеть в основном как средство связи с другими студентами университета. Если сегодня Фейсбук можно сравнить с лихорадочной трассой с выездами и заездами через каждые несколько секунд, то в нулевые годы он больше напоминал школьную комнату отдыха, где одновременно могли общаться лишь несколько человек. Вы создавали профиль, обновляли свой статус в нем, вступали в группы по общим интересам – но не более того.