1.4.8. Перспективность оборудования
Рассматривая тенденции развития аналитического приборостроения, можно отметить, что в последнее время наиболее активно развиваются следующие направления: газожидкостная хроматография, инверсионная вольтамперометрия, атомно-абсорбционный и атомно-эмиссионый метод анализа. Перечисленные методы количественного химического анализа отличаются высокой чувствительностью (возможно обнаружение в пробе пикограммовых количеств определяемого вещества), специфичностью (при создании определенных условий анализа возможно раздельное определение пространственных и оптических изомеров) и производительностью.
Современные газовые и жидкостные хроматографы, вольтамперометрические представляют собой автоматизированные измерительные комплексы, позволяющие проводить измерения в сериях образцов с минимальным вмешательством со стороны оператора, обрабатывать результаты в режиме реального времени и документировать их, создавать базы данных результатов испытаний с возможностью проведения различных видов статистического анализа и многое другое. Анализ разработанных за последнее время стандартизированных методов испытаний показывает, что подавляющее большинство из них основано на использовании перечисленных методов.
Стоимость оборудования – важный фактор. Некоторые руководители испытательных лабораторий придерживаются принципа «чем дороже – тем лучше» и забывают о том, что существует целый ряд российских фирм, выпускающих приборы, не уступающие по техническим и метрологическим характеристикам зарубежным аналогам, но при этом имеющие одно очень важное преимущество – их стоимость в несколько раз меньше.
1.5. Химические реактивы
1.5.1. Классификации и фасовка реактивов
По своему назначению реактивы могут быть разделены на две основные группы: общеупотребительные и специальные.
Общеупотребительныереактивы имеются в любой лаборатории, и к ним относится сравнительно небольшая группа химических веществ: кислоты (соляная, азотная и серная), щелочи (раствор аммиака, едкие натр и кали), окиси кальция и бария, ряд солей, преимущественно неорганических, индикаторы (фенолфталеин, метиловый оранжевый и др.).
Специальные реактивы применяются только для определенных работ.
По чистоте реактивы делятся на химически чистые (х. ч.), чистые для анализа (ч. д. а.), чистые (ч.).
Кроме того, имеются реактивы кондиций: технический (техн.), очищенный (оч.), особой чистоты (ос. ч.), высшей очистки (в. оч.) и спектрально чистый (сп. ч.).
Для реактивов каждой из этих категорий установлено определенное допустимое содержание примесей.
Наиболее употребительные реактивы, расход которых может быть значительным, покупаются в крупной расфасовке, в банках или бутылях, содержащих иногда по нескольку килограммов вещества. Мало употребительные и редкие реактивы обычно имеют мелкую расфасовку, от 10 до 1 г, и даже мельче. Наиболее дорогие и редкие реактивы, как правило, хранят отдельно.
Многие реактивы поступают в лабораторию в крупной таре. Отбор мелких порций веществ непосредственно из барабанов, больших бутылей запрещен. По этой причине расфасовка реактивов – довольно частая операция в лабораторной практике. Эта операция связана с рядом опасностей, поэтому доверять се можно только опытным лицам, хорошо знающим свойства данных веществ.
Твердые реактивы при хранении в банках могут слежаться в плотные комки, которые трудно извлекать. Поэтому, прежде чем брать твердый реактив из банки, нужно (при закрытой пробке) потрясти банку, ударяя её ладонью по боку. Если слежавшийся реактив при этом не рассыпается, тогда, открыв пробку, разрыхляют верхний слой при помощи чистого рогового или фарфорового шпателя, или стеклянной палочки. Металлический шпатель применять для этой цели не рекомендуется.