Теперь я перехожу к другому разделу этой темы. В предыдущем разделе мы видели, что не существует науки об абсолютном времени, взятом отдельно, но что любое измерение времени, которое является общеприменимым, зависит от некоторого предыдущего измерения объектов или движений во времени и пространстве вместе. Таким образом, в определенном смысле измерение пространства является предшествующим условием измерения времени, и именно об этом я должен сейчас рассказать.

Обычное геометрическое представление о реальном, но абстрактном пространстве – это представление о нем как о безграничном пространстве, или протяженности во всех направлениях, абстракции, которая позитивно воспринимается только при сохранении в мысли некоторой определенности, взятой из ее материального со элемента в восприятии, чтобы противопоставить ее полной пустоте одного лишь формального элемента. Минимальным определением, или sine qua non восприятия абстрактного пространства, является мысль о математической точке в нем, как о центре расходящихся линий, или направлений, в которых может происходить движение, без ограничений или отклонений, возникающих из пустоты, в которую оно направлено.

Наше первоначальное комплексное восприятие конкретного мира пространства включало в себя восприятие его как окружающего единственного постоянного центра; но этот центр был занят конкретным объектом, телом воспринимающего, как показал анализ, приведенный в книге I. Но когда мы абстрагируем формальный элемент, называемый пространством, от этого конкретного мира и объективируем его как абстрактный объект, мы не только абстрагируемся от любого конкретного объекта в качестве его центра, но и обнаруживаем, что математическая точка, которую мы затем сохраняем в мысли как минимальное условие ее представления, не имеет в ней никакого конкретного положения; при этом в мысли не сохраняется никакой другой точки или точек, по отношению к которым ей можно было бы приписать конкретное положение. На самом деле мы имеем полную свободу действий, вводя определения и фигуры в наше представление реального, но абстрактного пространства, при одном лишь условии, что они не будут противоречить тому представлению о нем, которое вытекает из опыта, а именно как об абстрактной и безграничной Необъятности, простирающейся во всех направлениях от любой точки, которую мы можем принять за центр. Из этого следует, что все направления, определения или фигуры, которые мы можем ввести в него, будут идеальными делениями одного бесконечного и непрерывного пространства, подобно тому, как в предыдущем разделе мы видели, что все производство чисел состоит в актах деления временного континуума. Теперь, чтобы создать геометрию, или научную систему, всех возможных определений или фигураций пространства, которая будет адекватна этому представлению о нем как о безграничной пустоте и в то же время применима для измерения конкретных физических явлений космического мира, первым и наиболее существенным шагом является приведение к некоторому порядку того неопределенно большого числа направлений, о которых говорят как о «всех возможных направлениях», из одной точки пространства, взятой в качестве центра. Для этого используется система трех прямоугольных осей координат, введенная Декартом и положенная им в основу применения алгебры к геометрии, известной как алгебраическая или аналитическая геометрия.

Чтобы понять, что имеется в виду, представьте себе три прямые линии, каждая из которых может быть продлена в любом направлении до бесконечности и пересекаться под прямым углом в любой точке пространства. Одна из этих линий представляет собой направление или направления вверх и вниз от точки пересечения, другая – направления вправо и влево, а третья – направления вперед и назад от той же точки. Очевидно, что мы можем заменить эти три прямые линии тремя плоскостями, пересекающимися под прямым углом и встречающимися в одной точке; одна из этих плоскостей будет лежать посередине между направлениями вверх и вниз из этой точки, другая – посередине между направлениями вправо и влево от нее и под прямым углом к ним, третья – посередине между направлениями вперед и назад от нее и под прямым углом к ним. Очевидно также, что все остальные точки пространства, кроме этой центральной, должны лежать либо на самих этих линиях или плоскостях, либо в восьми областях, на которые они делят все пространство, в остальном не разделенное на части.