В основании ограждающей водоем-охладитель дамбы залегал мощный до 8 м слой торфа. Ввиду обводненности торфа его выемка представляла сложную и дорогостоящую работу.
По инициативе гидромеханизаторов, с помощью гидротехника Рижского ТЭПа Красновой и при поддержке начальника Главка Юрия Николаевича Корсуна было принято решение об уширении дамбы и стадийном её возведении для постепенной нагрузки на торф основания для его уплотнения.
Это смелое решение прошло проверку временем и оказалось оправданным, при намыве дамб с пляжным откосом требования к подготовке основания впоследствии существенно снижались, и это способствовало сокращению сроков строительства, особенно при заболоченности основания, где поверхность становится непроходимой для сухоройной техники.
Как известно, энергетическое строительство связано непосредственно с природными условиями, которые отличаются большим многообразием, строительство любой ГЭС и ТЭС несет свои присущие ей особенности, поэтому и работы гидромеханизации по своему неповторимы на каждом крупном объекте и требуют всегда творческого подхода. Одним из этапов работы треста был массовый переход на строительстве тепловых электростанций.
Отличительной особенностью строительства ТЭС было сокращение сроков строительства, и, следовательно, мобильности кадров и техники. Крупные ТЭС строились преимущественно с изолированными водоемами – охладителями, хотя ряд крупных ТЭС часто строились с непосредственным забором и сбросом теплой водя в естественные водоемы и даже реки.
«Грошовая» экономия стоимости строительства на сокращении затрат на сооружение водоемов-охладителей и погоня за повышением КПД электростанции часто оборачивалась при эксплуатации нарушением экологии озер и рек. Но все же на многих строящихся ТЭС, особенно атомных, объем земляных работ для сооружения изолированных водоемов был достаточно велик.
В строительстве ТЭС участвовали все СУ треста в зависимости от их размещения. Выполнялись работы гидромеханизации на расчистке водоемов, выемки подводящих каналов к насосным станциям ТЭС, сбросных каналов, намыву площадок под сооружения ТЭС на слабых грунтах и выемки котлованов, сооружению ограждающих и струенаправляющих дамб водоемов. Характерным отличием от плотин ГЭС были сравнительно небольшие напоры дамб системы водоснабжения ТЭС.
Сокращение сроков строительства ТЭС потребовало мобильности коллектива бригад земснарядов, и самих земснарядов. Земснаряды типа 300—50 с цельносварными корпусами обычно демонтировались, корпус судна разрезался газовой резкой, детали перевозились обычно по железной дороге, на новом объекте секции корпуса соединялись с помощью электросварки. Этот процесс перебазирования земснаряда обычно продолжался около 6 месяцев, хотя опытные бригады Днепродзержинского СУ производили перебазирование земснаряда за 3 месяца.
В том случае, когда было возможно перебазировать земснаряд водным путем, такая возможность всегда использовалась. В Московском СУ использовалась даже возможность буксировки речных земснарядов по Балтийскому морю на строительства Каунасской ГЭС, Кайшядорской ГАЭС, по Белому и Баренцеву морю на строительство Печорской ГРЭС, хотя такая транспортировка морем всегда связана с риском потопления земснаряда при шторме, и такие случаи в практике треста были.
Институтом «Гидропроект» (конструктор Т. В. Марголин) в 80-е годы был спроектирован разборный земснаряд среднего класса 200—50 БР, блоки земснаряда были приспособлены для перевозки автотранспортом. Этот земснаряд мог быть разобран, перевезен по автодороге и собран на новом объекте в течение одной недели. Однако таких земснарядов было построено на Рыбинском заводе немного.