Галилео был не первым, кто поставил под сомнение теорию Аристотеля о падающих объектах[11], и даже не первым, кто проверил ее верность с помощью эксперимента[12]. Согласно записям Вивиани, когда Галилео был профессором в Пизе (1589–1592), он продемонстрировал ошибочность утверждения Аристотеля о падающих объектах из одинакового материала, но имеющих разный вес, с падающей Пизанской башни:
Рис. 2.2. Объект сталкивают со здания (или башни) – с начальной высоты. Пока он падает, его скорость растет (в то время как высота уменьшается). Он достигает максимальной скорости как раз перед тем, как столкнуться с поверхностью. Время до касания с поверхностью напрямую зависит от начальной высоты.
«…он полностью погрузился в исследование; в результате Галилео, к большому неудовольствию всех философов, с помощью опытов, наглядных примеров и аргументов опроверг идеи самого Аристотеля о движении, считавшиеся в то время истиной: как, например, тот факт, что вес объектов из одинакового материала при движении через одну и ту же среду будет влиять на их скорость (на самом деле она будет примерно одинаковой). Раз за разом в присутствии других преподавателей и студентов он подкреплял эти идеи экспериментами, которые проводил с высоты Падающей Пизанской башни».
Галилео пришел к выводу, что объекты с разным весом из одного и того же материала падают с одинаковой скоростью и за одинаковое время; теория Аристотеля была опровергнута раз и навсегда. Эту историю рассказал Вивиани, который вел записи за Галилео в его последние годы, в 1657 году. Сегодня большинство историков не верят, что Галилео действительно бросал предметы с Пизанской башни.
Независимо от этого, мы не можем не гадать, вывел ли Галилей это следствие из своих наблюдений за маятником.
В конце концов, как мы отметили прежде, маятник – просто измененная версия свободного падения. Поэтому, так как период маятника – также определяющий его время падения [13](время, которое требуется для падения в низшую точку качания) – не зависит от массы[14], не должно быть сюрпризом и то, что время свободного падения объекта (время, через которое он коснется поверхности) также не зависит от нее.
Мы находим между качающимся маятником и свободно падающим объектом и другие общие черты. Опять-таки, скорость в любом пункте во время падения зависит от разности высот, и максимальная скорость все еще достигается в самой низкой точке – прямо перед тем, как объект коснется земли. А что же насчет времени падения? Мы уже отметили, что время падения маятника определяется периодом. Для изохронного маятника это означает, что время падения, как и период, зависит только от длины нити; то есть не зависит от начальной высоты (амплитуды). Тем не менее мы также заметили, что это особый случай для маятника, а в общем период – а, следовательно, и время падения – будет зависеть от изначальной высоты, так что большая высота увеличивает время падения.
Это также справедливо и для свободно падающих объектов: чем выше начальная высота падения, тем больше времени требуется объекту, чтобы достичь поверхности. Таким образом, взаимоотношения между высотой и скоростью проявляются при свободном падении так же, как и при движении маятника. И снова все это имеет отношение к сохранению энергии. Давайте посмотрим на другую систему – наклонную плоскость.
Движение по наклонной плоскости
Мы уже говорили о наклонной плоскости, когда обсуждали простые механизмы, но теперь мы хотим понять принцип движения катящегося по наклонной плоскости объекта (рис. 2.3)[15]. Сейчас вам должно быть ясно, что, как и в случае с маятником, это еще одна форма свободного падения. Тогда как свободному падению маятника препятствовал трос (нить), движение объекта на наклонной плоскости ограничено только тем, что он катится по наклону.