По отдельности квантовая механика и Общая теория относительности Эйнштейна экспериментально подтверждены. Однако еще ни разу не исследовался случай, когда можно было бы проверить обе теории одновременно. Дело в том, что квантовые эффекты заметны лишь в малых масштабах, а для того, чтобы стали заметны эффекты Общей теории относительности, требуются большие массы. Объединить оба условия можно лишь при каких-то экстраординарных обстоятельствах.

Помимо отсутствия экспериментальных данных существует огромная концептуальная проблема: Общая теория относительности Эйнштейна полностью классическая, т. е. неквантовая. Для обеспечения логической целостности физики нужна квантовая теория гравитации, объединяющая квантовую механику с Общей теорией относительности в квантовую теорию пространства-времени.

Физики разработали множество математических процедур для превращения классической теории в квантовую. Многие ученые тщетно пытались применить их к Общей теории относительности.

Кстати, термин «петлевая» был введен из-за того, что в некоторых вычислениях использовались маленькие петли, выделенные в пространстве-времени.

Согласно теории петлевой квантовой гравитации, пространство подобно атомам: числа, получаемые при измерении объема, образуют дискретный набор, т. е. объем изменяется порциями. Другая величина, которую можно измерить, – площадь границы, которая тоже оказывается дискретной. Иными словами, пространство не непрерывно и состоит из определенных квантовых единиц площади и объема.

Возможные значения объема и площади измеряются в единицах, производных от длины Планка, которая связана с силой гравитации, величиной квантов и скоростью света. Длина Планка очень мала: 10–33 см; она определяет масштаб, при котором геометрию пространства уже нельзя считать непрерывной. Самая маленькая возможная площадь, отличная от нуля, примерно равна квадрату длины Планка, или 10–66 см>2. Наименьший возможный объем, отличный от нуля, – куб длины Планка, или 10–99 см>3. Таким образом, согласно теории, в каждом кубическом сантиметре пространства содержится приблизительно 1099 атомов объема. Квант объема настолько мал, что в кубическом сантиметре таких квантов больше, чем кубических сантиметров в видимой Вселенной (1085).

На что же похожи кванты объема и площади? Быть может, пространство состоит из огромного количества крошечных кубов или сфер? Все оказывается далеко не просто.

Вот как описывает проблему визуализации известный квантовый теоретик Ли Смолин. Вообразите область пространства, по форме напоминающую куб. На диаграмме мы изображаем ее как точку, представляющую объем, с шестью выходящими из нее линиями, каждая из которых изображает одну из граней куба. Число рядом с точкой указывает величину объема, а числа рядом с линиями – величину площади соответствующих граней.

Поместим на вершину куба пирамиду. У наших многогранников есть общая грань, и их следует изобразить как две точки (два объема), соединенные одной из линий (грань, которая соединяет объемы). У куба осталось пять свободных граней (пять линий), а у пирамиды – четыре (четыре линии). Аналогично можно изобразить любые комбинации различных многогранников: объемные полиэдры становятся точками, или узлами, а плоские грани – линиями, соединяющими узлы. Математики называют такие диаграммы графами.


Квантовые состояния объема и площади


В нашей теории отбрасываем рисунки многогранников и оставляем только графы. Математика, описывающая квантовые состояния объема и площади, обеспечивает нас набором правил, указывающих, как линии могут соединять узлы и какие числа могут располагаться в различных местах диаграммы. Каждое квантовое состояние соответствует одному из графов, и каждому графу, удовлетворяющему правилам, соответствует квантовое состояние. Графы представляют собой удобную краткую запись возможных квантовых состояний пространства.