4. Подвижность бактерий. Различают бактерии подвижные и неподвижные. Подвижные бактерии подразделяют на ползающие, или скользящие, они передвигаются за счет волнообразного сокращения клеток; и плавающие бактерии, у которых активная подвижность связана с наличием жгутиков.
5. Спорообразование – форма и характер расположения споры в клетке.
6. Физиологические свойства – способы углеродного (аутотрофы, гетеротрофы), азотного (аминоавтотрофы, аминогетеротрофы) питания; тип дыхания: аэробы, факультативные анаэробы, строгие анаэробы, микроаэрофилы.
7. Биохимические свойства – способность ферментировать различные углеводы, протеолитическая активность, образование индола, сероводорода, наличие уреазы и других ферментов и т. д.
8. Чувствительность к специфическим бактериофагам.
9. Антигенные свойства. Они зависят от химического состава клеточной стенки и жгутиков бактерий.
10. Химический состав клеточных стенок (содержание и состав основных сахаров и аминокислот).
11. Липидный и жирнокислотный состав. Изучение состава жирных кислот проводят с помощью газовой хроматографии, которая обладает высокой разделительной способностью и чувствительностью.
12. Белковые спектры. С помощью различных методов фракционирования, а главным образом двумерного электрофореза в полиакриламидном геле, разделяют сложные смеси рибосомных, мембранных или внутриклеточных белков и получают электрофореграммы, или белковые спектры, соответствующей фракции данного вида бактерий.
В связи с тем, что количество фенотипических признаков, используемых для классификации микроорганизмов, значительно возросло, в конце 50-х гг. ХХ в. возникла нумерическая (численная) таксономия. Ее возникновению способствовало появление более совершенных компьютерных систем, которые позволяют быстро и точно производить громоздкие математические расчеты. В основе нумерической таксономии лежит принцип сопоставления организмов по возможно большему количеству учитываемых признаков при допущении, что все они для систематики равноценны. Однако принцип равнозначности является основным недостатком этого метода.
В последние годы для классификации бактерий помимо изучения их фенотипических свойств все более широко используют методы геносистематики. В ее основе лежит изучение нуклеотидного состава ДНК и наиболее важных характеристик генома, в частности его размера (величина, объем, молекулярная масса) и других параметров. Наиболее точным методом установления генетического (геномного) родства между бактериями является определение степени гомологии ДНК. Чем больше идентичных генов, тем выше степень гомологии ДНК и ближе генетическое родство.
Метод молекулярной гибридизации ДНК – ДНК считается сейчас наиболее важным для систематики бактерий. Однако четких и твердо установленных критериев степени гомологии ДНК для таких рангов, как вид и род бактерий, еще нет. Допускают, что диапазон гомологии ДНК от 60 до 100 % говорит о принадлежности к одному и тому же виду, степень гомологии от 40 до 60 % – к разным родам одного семейства. Таким образом, подобно тому, как фенотип и генотип отражают сущность организма, феносистематика и геносистематика отражают сходство и различие организмов, степень их генетического родства. Признаки, используемые для систематики бактерий, используют и для их идентификации, т. е. для установления их таксономического положения и прежде всего видовой принадлежности, что является решающим моментом бактериологической диагностики инфекционных заболеваний. Чаще всего для идентификации патогенных бактерий изучают их морфологические, тинкториальные, культуральные, биохимические и антигенные свойства, а при необходимости и некоторые другие, например отношение к специфическим фагам, антибиотикам и т. д.