Под микроскопом на микрошлифе после полирования можно увидеть микротрещины и неметаллические включения (графит в чугунах, оксиды). Для выявления самой микроструктуры металла поверхность шлифа травят, т. е. обрабатывают специальными реактивами, состав которых зависит от состава металла. Выявление микроструктуры при травлении основано на том, что различные фазы протравливаются неодинаково и окрашиваются по-разному. В результате травления микрошлифов чистых металлов можно выявить форму и размеры отдельных зерен. Микроанализ позволяет установить величину, форму и ориентировку зерен, отдельные фазы и структурные составляющие, изменение внутреннего строения металлов и сплавов в зависимости от условий их получения и обработки.

Для того чтобы рассмотреть детали структуры применяют электронный микроскоп, где изображение формируется при помощи потока быстро летящих электронов. Различают прямые и косвенные методы исследования структуры. Косвенные методы основаны на специальной технике приготовления тонких слепков-пленок, которые отображают рельеф травленого шлифа. Исследуя полученную реплику, наблюдают детали структуры, их минимальный размер равен 2–5 нм. Прямые методы позволяют исследовать тонкие металлические фольги толщиной до 300 нм на просвет с помощью электронных микроскопов высокого разрешения (микроскопы УЭМВ-100, УЭМВ-100А, УЭМВ-100В).

Оптический микроскоп не является аппаратом, который может обнаружить кристаллик любого размера.

Количественная металлография сталкивается с определенными трудностями. Так, проблема определения количественных параметров трехмерного объекта путем изучения его двухмерного сечения решается несколькими путями. При помощи сравнительного метода и метода средней длины пересекающего зерно отрезка определяется величина зерен металлов.

Сегодня используется автоматизированная система изучения микрошлифов металлов, которая включает применение микроскопа, видеокамеры, видеобластера и персонального ЭВМ.

4. Элементарная ячейка; координационное число; сингония

Кристаллографические направления и плоскости, анизотропия; межплоскостные расстояния Кристаллическая решетка – упорядоченное расположение атомов. Элементарная ячейка кристалла – минимальный объем кристалла, полностью сохраняющий все его свойства. Атомы в решетке располагаются различно.

Элементарная ячейка повторяется в трех измерениях и образует кристаллическую решетку. Структуру кристалла определяет положение атомов в элементарной ячейке.

Координационное число – общее число нейтральных молекул и ионов, имеющих связь с центральным ионом в комплексе.

1. У элементов четвертой группы ковалентная насыщенная и направленная связь, и у каждого атома четыре соседа. Число ближайших соседей – координационное число. Элементарная решетка – тетраэдр с одним атомом в центре и четырьмя атомами по вершинам.

2. При образовании ионной связи кристаллические решетки более компактны, координационное число достигает 6 из-за ненасыщенности ионной связи. Пример: кристаллическая решетка NaCI – примитивный куб с ионами хлора и натрия в вершинах.

3. Металлические связи делают кристаллические решетки более компактными. Координационные числа достигают значений 8 и 12. В металлических материалах формируются три типа кристаллических решеток: объемноцентрированная кубическая (ОЦК), гранецентрированная кубическая (ГЦК) и гексагональная плотно-упакованная (ГП).

Сингония – одно из подразделений кристаллов по признаку симметрии их элементарной ячейки при одинаковых системах координатных осей. Сингония характеризует симметрию трехмерных структур с трансляционной симметрией в трех направлениях.