В каждом из этих методов используется система основные науки: естествознание, философия, математика и техника, как разновидности сознательной деятельности. Причем, каждый метод использует свой присущий только ему раздел науки. Системный подход оперирует материалистической философией и теорией множеств. Системный анализ использует диалектику и комплексный анализ. В системном синтезе философской основой является логика, а математической – векторы. Системотехника применяет философские законы и тензорное исчисление.

Система, как известно, состоит из четырех элементов, расположенных в строгом порядке, где каждый последующий элемент содержит все предыдущие. Поскольку элемент «техника» в данной книге не рассматривается, то «математика» однозначно содержит «естествознание» и «философию».

Именно поэтому математика в своей основе имеет дело с реальными, а точнее, с природными целостными объектами, отображаемыми философскими понятиями и определениями, которые математика моделирует своими условными символами. С этими символами она и работает, создавая модели, реализуемые в будущих реальных объектах. Это прописные истины, над которыми математики, как правило, не задумываются. Они работают с веками созданной математикой и думают, что это так и должно быть. Однако задуматься бы надо. За многие годы известные математики напридумывали много такого, чего в природе не существует, следовательно, не имеет практического применения.

Вопрос № 2:

Известно ли математикам, что любая система, в том числе математическая, имеет всеобщие признаки?

Система первичных математических объектов, как и любая другая, имеет четыре признака:

Количественный – система имеет только четыре структурных образования от одного до четырех взаимосвязанных элементов в каждом;

Метрологический – каждый элемент системы имеет свою меру: реальную величину, изменяющуюся в идеальных пределах;

Качественный – в системе всегда имеется три вида структурных образования по три элемента в каждом: каждый последующий элемент содержит все предыдущие, каждая связь имеет положительное, нейтральное и отрицательное состояния, каждый предыдущий элемент содержит последующий;

Видовой – каждая система имеет четыре вида регулирования (управления): неопределенный – по одному критерию, неоднозначный – по двум критериям, определенный – по трем критериям, однозначный – по четырем критериям.

Вопрос № 3.

Знают ли математики, что их наука содержит систему противоречий?

Очевидно, знают, что есть некоторые противоречия, но какова их система, они вряд ли знают. А она основана на философском понятии «мера». Это единицы измерения, пределы изменчивости, границы перехода из одного состояния в другое (узловые соотношения меры) и отображения (философские отрицания).

Вопрос № 4:

Понимают ли математики, что первичные математические объекты не систематизированы?

У них нет особых претензий к ним: работают с тем, что имеет современная математика. Но при ближайшем рассмотрении претензии возникают к их физической сущности, признакам и определениям. Привязка математических объектов к реальным простейшим элементам Природы выявляет некоторые системные несоответствия. Требуется уточнение их физической природы, функций, структуры и степени определенности.

И здесь возникает целая серия вопросов.

Не совсем понятно, а точнее, совсем непонятно, какими общепринятыми и новыми условными обозначениями, и математическими названиями все это отобразить? В частности, бесконечные множества этих единичных элементов и переходы от одного к другому. Как образуются в энергетической среде космические вихри, которые создают ядра галактик? Как на этих ядрах возникают космические волны, которые превращаются в атомы? Как излучения атомов создают биологические вещества?