Древнегреческие геометры знали эллипсы и определяли их как сечение конуса плоскостью. В зависимости от наклона плоскости относительно оси конуса «конические сечения» включают в себя окружности, эллипсы, параболы и гиперболы.

Когда планета движется по эллипсу, расстояние от нее до Солнца меняется. Приближаясь к Солнцу, планета ускоряется; удаляясь от Солнца, замедляется. Немного удивительно, что все эти эффекты в сумме умудряются создать орбиту в точности одинаковую по форме с обеих сторон. Кеплер этого не ожидал, и его долгое время преследовала мысль, что эллипс в ответе, должно быть, получился по ошибке.



Форма и размер эллипса определяются двумя длинами: длиной большой оси, представляющей собой самый длинный отрезок прямой, соединяющий две точки на эллипсе, и длиной малой оси, которая перпендикулярна большой. Окружность – это разновидность эллипса, для которой две указанные длины равны; в этом случае они обе равны диаметру окружности. В астрономии радиус считается более удобной мерой. Так, радиус круговой орбиты равен расстоянию от планеты до Солнца и соответствующие величины для эллипса называют большим радиусом и малым радиусом. К этим же величинам относятся более громоздкие термины «большая полуось» и «малая полуось», поскольку они представляют собой половинки большой и малой оси. Менее интуитивно понятна, но очень важна еще одна характеристика эллипса: его эксцентриситет – это количественное отражение формы эллипса, того, насколько он длинный и тонкий. Эксцентриситет окружности равен нулю, а для фиксированной длины большой полуоси он стремится к единице, по мере того как длина малой полуоси стремится к нулю[9].

Размер и форму эллиптической орбиты можно охарактеризовать двумя числами. Как правило, выбирают большую полуось и эксцентриситет. Малую полуось можно вычислить исходя из этих двух параметров. Большая полуось орбиты Земли составляет 149,6 миллиона километров, ее эксцентриситет равен 0,0167; при этом малая полуось равняется 149,58 миллиона километров, так что орбита очень близка к круговой, на что указывает и малый эксцентриситет. Плоскость земной орбиты имеет особое название – эклиптика.

Пространственное положение любой другой эллиптической орбиты вокруг Солнца можно охарактеризовать тремя дополнительными числами; все три – угловые величины. Одна из этих величин представляет собой наклон орбитальной плоскости к плоскости эклиптики. Вторая величина, по существу, дает направление большой оси орбиты в этой плоскости. Третья дает направление прямой, по которой пересекаются эти две плоскости. Наконец, нам нужно знать, где именно на орбите в данный момент располагается планета, для чего потребуется еще один угол. Таким образом, для того, чтобы определить орбиту планеты и ее положение на этой орбите, нам требуется два числа и четыре угла – шесть орбитальных элементов. Главной целью ранней астрономии было вычислить орбитальные элементы каждой планеты и каждого астероида, которые удалось обнаружить. Имея эти числа, можно предсказывать будущее положение объекта, по крайней мере до тех пор, пока совместное воздействие других тел не приведет к существенному возмущению орбиты.

Со временем Кеплер смог сформулировать набор из трех элегантных математических закономерностей, которые в настоящее время называются законами планетарного движения. Первый из них гласит, что орбита любой планеты представляет собой эллипс, в одном из фокусов которого находится Солнце. Второй – что отрезок прямой, соединяющий Солнце с планетой, за равные промежутки времени заметает равные площади. А третий говорит нам, что квадрат периода обращения пропорционален кубу расстояния.