Приложим теперь те же рассуждения к миру трехмерному. Когда мы описываем историю изменений какой-нибудь вещи в нашем трехмерном пространстве, не даем ли мы последовательные изображения этой вещи во времени? Если так, то можно рассматривать время как четвертое измерение мира, измерение, в котором движется наш трехмерный мир; каждое явление, наблюдаемое в трехмерном мире – есть одно из последовательных «пересечений» нашего трехмерного мира с четырехмерною вещью. Существо четырех измерений могло бы сразу охватить всю историю вещи, всю ее «жизнь» в виде некоторого четырехмерного объекта, недоступного нашему воображению.
Само собою разумеется, что фантастическая мысль Уэллса – придумать механизм для произвольного движения в четвертом измерении – не свободна от внутренних противоречий и должна быть принимаема не иначе как чисто художественный прием, удобный для успешного развития интриги фантастической повести.
На комете
Жюля Верна[9]
Однажды – 27 июня – профессор Розетт бомбой влетел в общую залу, где собрались капитан Сервадак, лейтенант Прокофьев, Тимашев и ординарец Бен-Зуф.
– Лейтенант Прокофьев, – крикнул он, – отвечайте без обиняков и лишних разговоров на вопрос, который я вам задам.
– Я и не имею обыкновения… – начал было лейтенант.
– И отлично! – перебил профессор, обращавшийся с лейтенантом, как учитель с учеником. – Отвечайте: вы объехали на вашей шхуне «Добрыне» кругом Галлии почти по экватору, иначе говоря – по ее большому кругу. Да или нет?
– Да, – ответил лейтенант, которому Тимашев подал знак не противоречить раздраженному ученому.
– Хорошо. А измерили вы при этом путь, пройденный шхуной «Добрыней»?
– Приблизительно, т. е. с помощью лага[10] и буссоли[11], но не измеряя высоты солнца и звезд, которую невозможно было определить,
– И что же вы узнали?
– Что окружность Галлии составляет около 2.323[12] километров, а следовательно, ее диаметр равен 740 километрам.
– Да, – сказал профессор, словно про себя, – диаметр в 17 раз меньшеземногодиаметра, равного 12.735[13] километрам.
Сервадак и его спутники смотрели на ученого, не понимая, куда он ведет.
– Так вот, – сказал профессор, – для завершения моего изучения Галлии мне остается определить ее поверхность, объем, массу, плотность и напряжение тяжести на ней.
– Что касается поверхности и объема, – ответил Прокофьев, – то раз мы знаем диаметр Галлии, нет ничего легче, как определить их.
– А я говорю разве, что это трудно? – воскликнул профессор. – Ученик Сервадак, возьмите перо. Зная длину большого круга Галлии, определите величину ее поверхности.
– Вот, – ответил Сервадак, решивший держаться примерным учеником. – Множим окружность 2.323 километра на диаметр, т. е. на 740.
– Скорее же, – торопил профессор, – пора бы уже иметь результат. Ну!
– Так вот, – ответил Сервадак, – я получил в произведении 1.719.020 квадратных километров. Это и есть поверхность Галлии.
– Ну, – продолжал профессор, разгорячаясь, – а теперь, каков же объем Галлии?
– Объем… – замялся Сервадак.
– Ученик Сервадак, неужели вы не можете вычислить объем шара, раз вам известна его поверхность?
– Но, профессор, вы не даете мне времени вздохнуть…
– При вычислениях не дышат, сударь, не дышат!
Слушатели с большим трудом удерживались от смеха.
– Мы когда-нибудь кончим с этим? – спросил профессор – Объем шара равен…
– Произведению поверхности на…
– На треть радиуса, сударь, на треть радиуса! – гремел профессор. – Кончили?
– Почти. Треть радиуса Галлии равна 123,33.
– Ну?
– Произведение 1.719.020 на 123,33 составляет 212.006.737 кубических километров.
– Итак, – сказал профессор, – мы знаем теперь диаметр, окружность, поверхность и объем Галлии. Это уже нечто, но еще не все. Я намерен определить ее массу, плотность и напряжение тяжести на ее поверхности.