Этот раздел математики известен как теория узлов. Узлы в математике, однако, отличаются от узлов в вашей повседневной жизни одним значимым способом: у них нет свободных концов, то есть они замкнуты. На самом деле, вы можете сделать такой узел самостоятельно. Возьмите кусок веревки – или сваренные спагетти, или лассо – и завяжите обычный узел. Теперь возьмите концы и соедините их с помощью скотча. В итоге у вас может получиться крендель, но в любом случае это будет математический узел!

И хотя отчасти теория узлов хорошо нам знакома, в ней есть свои особенности. В своей книге об узлах Колин Адамс дал следующее определение узлу в математике: «это замкнутая кривая в пространстве, которая не пересекает себя ни в одной точке». Такое определение может натолкнуть вас на мысль о том, какой же узел является простейшим. Таким узлом является простая окружность, такой узел называют «незаузленным». (А еще его называют тривиальным.) Также самыми простыми узлами являются «восьмерка» и «трилистник».



Что конкретно происходит в течение одного дня теоретика, занимающегося узлами? Они обычно стремятся узнать, можно ли развязать тот или иной узел, не разрезая его, или можно ли определить, что узел на самом деле является тривиальным, но в необычной форме. Но теория узлов больше волнует не математиков вовсе. Биологи интересуются теорией узлов из-за ДНК – молекулы, которая кодирует материалы, необходимые для всех живых организмов, – которая иногда может содержать узлы, а они, в свою очередь, могут влиять на то, как информация в молекуле ДНК может интерпретироваться клеточными механизмами организма. Химики также заинтересованы в узлах. Многие из них хотели бы разобраться со сцепленными молекулами, так как в зависимости от узла определенная молекула может совершенным образом поменять свое поведение. (При одной конфигурации вещество может вести себя как масло, а при другой – как гель.) Даже один или два поворота могут иметь существенные последствия.

Гипотезы Тейта

Математик XIX века Питер Гатри Тейт создал классификацию узлов, согласно количеству их пересечений. Он также выдвинул три гипотезы, включая альтернирующие узлы (при проходе такого узла пересечения чередуются «сверху» и «снизу»), хиральные узлы (они не эквивалентны своему зеркальному отражению) и число закрученности (геометрическая величина, которая описывает зацепления в узлах). Все три гипотезы не так давно были доказаны.


1.9. Что скрывает карта метрополитена?

Математическое понятие: топология


Посмотрите на карту метро любого города в мире. Что вы видите? В отличие от атласов, в которых показывается каждый поворот и изгиб дороги, карта метро выглядит довольно просто. Она состоит из прямых линий, окружностей и кривых. (Для примера откройте карты метро Лондона, Бостона или Вашингтона.) Однако поезда метро редко следуют таким совсем не сложным маршрутам: поезда проезжают целую серию препятствий на пути от одной станции до другой. Но несмотря на такое расхождение, карта метро все равно помогает путешественникам в навигации. Как так получается, что эти карты выбрасывают такое количество информации и все равно остаются полезными?



Ответ скрывается в области математики, которая известна как топология. Топология связана с геометрией и изучает то, как формы меняются, когда их растягивают, сжимают, тянут, перекручивают или искажают. (Слово «топология» от греческого «место», «учение».) Однако изменения, изучаемые топологией, должны подчиняться правилу: изменения не должны нарушать оригинальную целостность фигуры. Например, фигуры, которые были порезаны или приклеены друг к другу, не могут считаться допустимыми предметами для топологического изучения. С другой стороны, создаются новые формы, когда вы до конца натягиваете резинку, скручиваете ее в шар или перекручиваете в форму кренделя – все это допустимо. Вкратце, в топологии вы должны быть способны вернуть новую форму в ее первоначальное состояние за одно непрерывное движение. Если вы можете это сделать, то с точки зрения топологии эти две формы эквивалентны.