” (Омар Хайам?)
Динамические модели позволяют описать намного более широкий спектр возможных траекторий и обладают важным преимуществом – наличием обратной связи, позволяющей системе саморегулироваться. Таким образом, формальный математический аппарат незаменим, когда надо строго связать набор предположений относительно системы с прогнозами ее динамики, описываемых параметрами. Например, в экономико-демографических моделях это число людей и ресурсы, которые производит общество, в социально-политических это также население и политическая стабильность110, военно-политических – военно-технический потенциал, мобилизационные ресурсы и логистика. В них в качестве динамических переменных могут выступать геополитическая мощь и энтропия. Они обычно характеризуются нелинейными обратными связями, часто действующими с различными запаздываниями во времени.
Нелинейные модели являются более богатыми в функциональном смысле. В связи с этим существует настоятельная необходимость включения в инструментарий социально-экономического моделирования логистических уравнений, отражающих запаздывание во времени111. Их применение обеспечивает динамическое разнообразие, которое позволяет преодолеть ограниченность линейных систем, описывющих динамические процессы. В них также применяются временные лаги, но сложность математического аппарата112 не позволяет широко его применять.
Например, макроэкономическое моделирование с запаздыванием113 было использовано при исследовании тенденций развития и прогноз будущего развития после вмешательства регулятора. В частности, Р. Гудвин предложил ввести нелинейность запаздывания таким образом, чтобы полученные уравнения имели устойчивый предельный цикл. Его экономические предположения и модель вызвали ряд критических замечаний, а полвека спустя выяснилось, что им в математических преобразованиях допущена ошибка114. Вследствие этого вывод Гудвина о существовании единственного устойчивого цикла оказался ошибочным. Данный пример иллюстрирует, что применение математического аппарата с недостаточно развитой теорией может привести к неадекватным выводам, но является стимулом для дальнейшего прогресса науки.
Возможность научного изучения кризисов долгое время подвергалась сомнению в силу неповторимости и уникальности таких явлений. При их детальном изучении обнаружено много общего и, в частности, доказано, что любое событие – результат самоорганизации открытой системы. Дальнейшие исследования данной проблемы привели к появлению теории катастроф, объединившей две математические дисциплины – теорию гладких отображений115 и теорию бифуркаций динамических систем. Для дальнейшей работы введём некоторые необходимые понятия. Пусть и – пространства переменных и соответственно, D* и D – области в и . Всякое отображение определяется функциями (*). Отображение f называется гладким, если функции (*) являются гладкими функциями116.
Понятие динамической системы – одна из многих полезных теоретических абстракций117. Реальные объекты и системы могут рассматриваться как динамические системы только в определённом приближении и в той мере, в какой при описании их динамики можно игнорировать их структуру и взаимодействие с окружающей средой. О динамической системе говорят в том случае, если можно указать такой набор величин, характеризующих состояние системы, что их значения в любой последующий момент времени определяются по определённому правилу из исходного набора значений. Они называются динамическими переменными, а правило – оператором эволюции системы, который можно представить в виде вектора. Если её состояние задаётся набором из