Кластеризация – это процесс разделения объектов на группы (кластеры) таким образом, чтобы объекты внутри одного кластера были более схожи между собой, чем с объектами из других кластеров. Кластеризация может быть использована для выявления скрытых паттернов, структуры или типов объектов в данных. Например, в маркетинге кластеризация может помочь определить группы потребителей с общими предпочтениями или поведением, что позволит создать более эффективные стратегии маркетинга для каждой группы.

Сегментация – это процесс разделения группы объектов на более мелкие сегменты на основе их характеристик или поведения. Сегментация позволяет более детально изучать каждую группу и разрабатывать персонализированные стратегии для каждого сегмента. Например, в медицине сегментация пациентов может помочь выделить подгруппы с определенными медицинскими характеристиками или рисками заболеваний, что позволит проводить более точные и целевые лечебные мероприятия.

Кластеризация и сегментация основаны на алгоритмах машинного обучения, которые автоматически определяют схожесть или различия между объектами и формируют кластеры или сегменты. Эти алгоритмы могут использовать различные подходы, такие как методы иерархической кластеризации, методы на основе плотности, методы разделения, а также комбинации этих методов.

Рассмотрим пример кода для кластеризации данных в банковской сфере с использованием метода K-средних (K-means) в языке программирования Python:

```python

# Импорт необходимых библиотек

import pandas as pd

import numpy as np

from sklearn.cluster import KMeans

import matplotlib.pyplot as plt

# Загрузка данных

data = pd.read_csv("bank_data.csv") # Предположим, у нас есть файл с данными о клиентах банка

# Подготовка данных

X = data[['Age', 'Income']] # Выбираем признаки, по которым будем проводить кластеризацию

# Масштабирование данных

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

X_scaled = scaler.fit_transform(X)

# Определение оптимального числа кластеров

inertia = []

for k in range(1, 10):

kmeans = KMeans(n_clusters=k, random_state=42)

kmeans.fit(X_scaled)

inertia.append(kmeans.inertia_)

# Визуализация графика локтя

plt.plot(range(1, 10), inertia, marker='o')

plt.xlabel('Number of clusters')

plt.ylabel('Inertia')

plt.title('Elbow Method')

plt.show()

# Выбор оптимального числа кластеров

k = 3 # По графику локтя видим, что оптимальное число кластеров равно 3

# Применение метода K-средних

kmeans = KMeans(n_clusters=k, random_state=42)

kmeans.fit(X_scaled)

# Добавление меток кластеров в данные

data['Cluster'] = kmeans.labels_

# Вывод результатов

for cluster in range(k):

cluster_data = data[data['Cluster'] == cluster]

print(f"Cluster {cluster + 1}:\n{cluster_data.describe()}\n")

```

Описание кода:

1. Импортируем необходимые библиотеки, такие как pandas для работы с данными, numpy для математических операций, sklearn для использования алгоритма K-средних и matplotlib для визуализации.

2. Загружаем данные из файла "bank_data.csv". Предполагается, что у нас есть файл с данными о клиентах банка, включающими возраст (Age), доход (Income) и другие признаки.

3. Выбираем признаки (Age и Income) для проведения кластеризации и создаем новый DataFrame X.

4. Масштабируем данные с помощью стандартизации с помощью объекта StandardScaler.

5. Определяем оптимальное число кластеров с помощью метода локтя (Elbow Method) и визуализируем график.

6. Выбираем оптимальное число кластеров (в данном случае равно 3).

7. Применяем метод K-средних с выбранным числом кластеров.

8. Добавляем метки кластеров в исходные данные.