Белки могут выступать, в том числе в роли ферментов, которые катализируют реакции. Ферменты могут разъединять соединённые белки и соединять разъединённые.
• Белки стыкуются и передают информацию.
• Ферменты соединяют и разрывают белки.
Информация всегда передаётся от ДНК к белку по следующему алгоритму:
от ДНК к РНК.
от РНК к белку.
Этот алгоритм показывает главенствование ДНК в организме.
При копировании ДНК иногда происходят ошибки при копировании последовательности нуклеотидов, что приводит к мутациям8.
Молекулярная биология описывает следующие виды мутаций:
• Точечная мутация – это мутация, при которой одна буква последовательности нуклеотидов случайно меняется на другую. В этом случае белок может немного измениться, и он начнёт работать менее качественно;
• Делеция – это мутация, при которой у предыдущей комбинации теряется и примыкает к следующей одна буква, что полностью меняет последующий код.
• Инсерция – это мутация, при которой дублируется одна буква и весь код изменяется.
Мутация в гене, которая на 0,5% повышает способность особи размножаться, позволяет этому гену распространиться по всей популяции.
Таким образом, идея естественного отбора в эволюции сочетается с идеей способности гена распространяться при мутации по всей популяции. Это объясняет закономерности эволюции и с точки зрения молекулярной биологии.
Когда незначительная мутация какого-либо белка повысит репродуктивность особи на 1,5%, то через некоторое время новая версия гена распространится по всей популяции.
При помощи белков гены задают организмам их признаки: рога, клыки, лепестки, почки и другие.
Редко, когда один ген идёт сразу же за другим геном, обычно между ними на ДНК находятся длинные отрезки. Эти отрезки не кодируют белки и многие считают их «мусорным» ДНК. При этом ДНК на 95% состоит из этих некодирующих отрезков.
Оказывается, эти 95% – это не мусор, а инструкция о том, когда активировать ген, это система переключателей, которые включают и выключают ген.
Таким образом, в ДНК строго за последовательностью гена следует информация, которая задаёт процессы активации этого гена.
Значит, цепочки ДНК – это не отправные точки догмы жизни, потому что:
• ДНК подчиняется правилам;
• Гены подчиняются правилам;
• 95% ДНК – это инструкции-правила для работы генов.
ДНК сама по себе не знает, что она делает. ДНК – это конструктор, который подчиняется разным факторам. ДНК могут управлять внешние регуляторы, например, белок особой формы, который, попадая в участок ДНК с инструкцией, образно нажимает на переключатель и начинает процесс транскрипции гена.
Кто же управляет этими белками, которые нажимают эти переключатели?
В клетке есть среда, которая, когда, например, у клетки кончается энергия, и белок активирует один из факторов транскрипции, то он связывается с рядом переключателей, производящим другие белки, которые занимаются ускорением, поглощающим энергию структуры клетки. Здесь среда регулирует генетические эффекты. Среда регулирует деятельность генов в ДНК, а сами гены не знают, что они делают. Понятие среды может выходить далеко за пределы клетки. Пример того, как среда внутри организма включает транскрипцию гена в клетке, можно увидеть в гормональной регуляции. Когда химическое сообщение приходит извне клетки и связывается со своими рецепторами, как ключ и замок, то в результате этой связки начинается транскрипция внутри клетки.
Это краткое описание того, как работают гормоны, свободно перемещаясь внутри организма и воздействуя на клетки по всему телу.
Большинство гормонов по своей природе – это белки, которые запускают программы передачи сигналов, активируя или деактивируя какой-либо фактор транскрипции в гене.