. Это стало началом блистательного возрождения дарвинизма, позже получившего название современный синтез (термин, используемый преимущественно в США), или неодарвинизм (в британской и европейских традициях)[9].

Нет ни надобности, ни практической возможности излагать здесь основы популяционной генетики[10]. Можно, однако, лаконично представить некоторые обобщения, имеющие отношение к остальной части обсуждения современной эволюционной биологии. Пусть и поверхностное, но такое резюме здесь будет существенно. По сути, основатели популяционной генетики осознали простой факт, что эволюция не действует на изолированные организмы или абстрактные виды, а направлена на конкретные группы скрещивающихся особей, называемые популяциями. Размер и структура эволюционирующей популяции в большой степени определяют направление и результат эволюции. В частности, Фишер сформулировал и доказал фундаментальную теорему естественного отбора (известную как теорема Фишера), в которой утверждается, что интенсивность отбора (и, следовательно, скорость эволюции путем отбора) пропорциональна величине генетической дисперсии по приспособленности эволюционирующей популяции, которая, в свою очередь, пропорциональна эффективному размеру популяции.

В табл. 1–1 собраны основные определения и уравнения, описывающие эффекты мутаций и давления отбора на устранение или закрепление мутантных аллелей в зависимости от эффективного размера популяции. Качественная суть этих уравнений в том, что при одинаковой скорости мутаций в популяции большего эффективного размера отбор более интенсивный. В таких популяциях даже мутации с небольшим положительным коэффициентом отбора («слегка» благоприятные мутации) закрепляются быстро. С другой стороны, мутации даже с очень маленьким отрицательным коэффициентом селекции («слегка» вредные мутации) быстро устраняются. Данный эффект был строго сформулирован в теореме Фишера.


Таблица 1–1. Фундаментальное соотношение, описывающее роль отбора и генетический дрейф в эволюции популяции


Из теоремы Фишера следует, что при эволюции, направляемой только естественным отбором, средняя приспособленность популяции не может уменьшаться (если, конечно, популяция собирается выжить). Пожалуй, наилучшим образом это можно представить с помощью образа «адаптивного ландшафта», который впервые был предложен другим отцом-основателем популяционной генетики, Сьюэлом Райтом. Райт создал этот чрезвычайно удачный образ в ответ на просьбу своего научного руководителя представить результаты математического анализа отбора в приемлемой для биологов форме. Благодаря своей простоте и изяществу это представление адаптивной эволюции сохраняет свою ценность по сей день и стимулировало многочисленные исследования, в результате которых появились более сложные и менее интуитивно понятные адаптивные ландшафты, в том числе и многомерные (Gavrilets, 2004)[11]. В соответствии с теоремой Фишера популяция, эволюция которой идет только за счет отбора (строго говоря, популяция бесконечного размера – такие популяции, естественно, не существуют, но являются удобной абстракцией, часто используемой в популяционной генетике), никогда не будет двигаться вниз по адаптивному ландшафту (см. рис. 1–1). Легко представить, что адаптивный ландшафт, как и обычный ландшафт, может иметь самую различную форму. При определенных обстоятельствах ландшафт может быть очень гладким, с единственным пиком, соответствующим глобальному адаптивному максимуму (иногда такой ландшафт образно называют «гора Фудзияма» (см. рис. 1–1