Не следует смешивать логическую характеристику понятий положительных и отрицательных с политической, нравственной, юридической оценкой тех явлений, которые они отражают. Так, «преступление» является положительным понятием, а «бескорыстие» – отрицательным. В русском языке отрицательные понятия выражаются словами с отрицательными приставками не-, без-, а-, де-, ин– и др.
4. Безотносительные и соотносительные понятия. Понятия делятся на безотносительные и соотносительные в зависимости от того, мыслятся ли в них предметы, существующие раздельно или в отношении с другими предметами. Безотносительные понятия отражают предметы, существующие раздельно и поэтому мыслящиеся сами по себе, вне связи с другими предметами. Таковы понятия «студент», «государство». В соотносительных понятиях отражаются предметы, существующие только в связи и одновременно друг с другом и поэтому не мыслящиеся один без другого. Особую систему соотносительных понятий образуют терминологические понятия.
13. Множество (класс) и его элементы
Классом, или множеством, называется определенная совокупность предметов, имеющих некоторые общие признаки. Множество в логике является абстрактным предметом, в котором каждый предмет, его составляющий, рассматривается лишь под углом зрения тех признаков, которые отражены в содержании того или иного понятия. Поскольку все они рассматриваются под углом зрения одних и тех же признаков, то становятся неразличимыми: мы их различаем не по свойствам и отношениям, а по именам.
Множество предметов (класс) состоит из элементов. Под элементом понимается любой из предметов этого множества, относительно которого можно утверждать, что ему присущи признаки этого множества. Так, элементом множества металлов считается любой из металлов, поскольку каждый из них включает признаки, отраженные в содержании понятия «металл».
Множество может иметь самое разное количество элементов, как то: бесконечность (звезды на небе), несколько (планеты Солнечной системы), один (звезда Солнечной системы), 0 (спутники Луны).
В зависимости от того, сколько элементов содержат понятия, они подразделяются на:
1) общие, заключающие в своем объеме группу предметов. Примерами общих понятий являются «планета» «растение» «художник» и др.;
2) единичные, если объем понятия составляет лишь один предмет. Примерами единичных понятий являются «Солнце», «картина “Мона Лиза”» и др.;
3) нулевые – с нулевым объемом в научном плане. Примерами нулевых понятий являются «колдун», «звезда в горошек» и др. Некоторые из таких понятий носят фантастический характер.
Живя в современном мире, мы понимаем, что практически все предметы состоят из отдельных элементов, но мы воспринимаем не элементы, а сам предмет. Так, мы воспринимаем стол, а не составные его части, хоккейную команду, а не отдельных личностей в ней и т. д. И понятия, отражающие группы элементов, мыслимых как единое целое, носят название собирательных.
Предметы, соответствующие собирательным понятиям, могут объединяться в множества (классы). Отношение между классом (множеством) и подклассом (подмножеством) выражается при помощи знака «=»: А = В. Это выражение читается следующим образом: А является подклассом В. Так, если А – студенты-гуманитарии, а В – студенты, то А будет подклассом класса В. Классы (множества) состоят из элементов.
Элемент класса – это предмет, входящий в данный класс. Так, элементами множества факультетов будут факультет естественных наук, гуманитарный факультет, механико-математический факультет и другие факультеты. Различают универсальный класс, единичный класс и нулевой, или пустой, класс. Класс, состоящий из всех элементов исследуемой области, называется универсальным классом (класс планет Солнечной системы, класс русских фонем). Если класс состоит из одного-единственного элемента, то это будет единичный класс (планета Юпитер, консонант). Наконец, класс, который не содержит ни одного элемента, называется