, и их исследования осуществляются в рамках неклассических логик.

Надо сказать, что, когда мы пытаемся прилагать эту теорию к определенным видам имен, в нее приходится вносить изменения. Возьмем, например, собственное имя. Собственным именем называется имя, которое предназначено для указания на один, и только один объект. Многие собственные имена, которые мы встречаем в повседневной жизни, не удовлетворяют этому определению, т. е. они не являются собственными в логическом смысле. Действительно, возьмем ли мы имена или фамилии людей, клички животных, нередко даже названия населенных пунктов – эти имена, как правило, обозначают более чем один объект. Логические же собственные имена – это имена уникальных объектов, это своего рода ярлыки, которые приклеиваются к вещам: одна вещь – один ярлык. Обозначение объекта с помощью собственного имени можно уподобить указанию на него пальцем: в последнем случае мы не сообщаем о предмете никакой информации, мы только указываем на него. Исходя из подобных соображений Б. Рассел утверждал, что собственное имя имеет значение, но не имеет смысла.

Следующий вид имен – общие имена. Общими называются имена, предназначенные для указания на произвольный объект определенной области. Примерами общих имен могут служить такие имена, как «человек», «число», «закон». Для них уже сам Фреге усложнил свою схему. Он полагал, что эти имена указывают на объект не напрямую, но посредством такой сущности, как понятие. Именно понятие, по его мнению, является значением общего имени. Под понятие, в свою очередь, подпадают определенные объекты. При этом число объектов, подпадающих под понятие, может изменяться от нуля до бесконечности. Взаимосвязь общего имени с указанными компонентами иллюстрируется на рис. 1.2.

Рис. 1.2

Тем не менее, каковы бы ни были особенности этой теории применительно к различным видам имен, для всех них в классической логике имеют силу следующие принципы употребления имен:

1) всякое имя является именем предмета;

2) любое имя, являющееся частью более сложного имени, может быть заменено другим именем, имеющим такое же значение, и при этом значение сложного имени не изменится.

Первый из них является принципом предметности, второй – принципом взаимозаменимости.

Что понимать под значением имен, содержащих переменные? Предложение «5 >4» имеет значение «истина», предложение «3 >5», имеет значение «ложь», но каково значение «x >у»? Вопрос этот не праздный, поскольку отношение следования устанавливается между формами высказываний, которые, как мы выяснили выше (с. 5), содержат переменные. Но логические отношения между выражениями устанавливаются исходя из значений этих выражений. Для преодоления этой трудности вводится понятие интерпретации. Интерпретация – это некоторое произвольное присваивание значений переменным, входящим в данное выражение. Так, примеры 1.3 и 1.4 являются разными интерпретациями примера 1.2. Пример 1.3 получается в результате присвоения переменным х, у, и z значений 3, 5 и 4 соответственно. Предложение «Санкт-Петербург севернее Москвы» можно понимать как одну из интерпретаций выражения «х севернее у», а именно такую, где переменной х присвоено значение «Санкт-Петребург», а переменной у – значение «Москва». Очевидно, что на одних интерпретациях выражения, содержащие переменные, становятся истинными, а на других – ложными. Интерпретация, на которой выражение принимает значение «истина», называется моделью. С помощью этих понятий мы можем дать более точное определение отношению следования:

Высказывание А является логическим следствием из множества высказываний {X}, сокращенно {X} |= А, если и только если каждая интерпретация, делающая истинной все высказывания, входящие в {X}, делает истинным и высказывание А.