• Высказывание, противоположное данному, называют его отрицанием.

• Из двух противоположных высказываний всегда одно является истинным, а другое ложным. Другими словами, всегда истинно либо само высказывание, либо его отрицание (но не то и другое одновременно).

Последнее предложение называется законом исключенного третьего. Его часто произносят в виде афоризма «третьего не дано».

Задача 1.2. Являются ли противоположными высказывания:

1) «Вчера светило солнце» и «Вчера шел дождь»;

2) «Я умею прыгать через лужи» и «Я не умею прыгать через лужи»?

Решение. 1) Нет. Возможно, вчера было пасмурно, но без осадков (или шел снег). С другой стороны, в один и тот же день вполне мог идти дождь и светить солнце.

2) Да. Можно либо уметь что-либо делать, либо не уметь.

Задача 1.3. Постройте отрицания к высказываниям, не пользуясь оборотом «Неверно, что…»:

1) Я встретил Вас.

2) Трудно быть богом.

Решение. 1) Построить отрицание помогает частица «не». Получается высказывание «Я не встретил Вас», противоположное исходному. Подумайте, почему высказывания «Не я встретил Вас» и «Я встретил не Вас» отрицаниями не являются.

2) Во втором лучше слово «трудно» заменить антонимом, получится, что «Богом быть легко».

Задача 1.4*. Британские ученые нашли древнюю рукопись, содержащую всего два утверждения:

1) Оба утверждения этой рукописи ложны.

2) Земля имеет форму чемодана.

Какой вывод можно сделать из этой рукописи?



Обсуждение. Пусть первое утверждение истинно. Тогда оно ложно. Противоречие. Значит, первое утверждение ложно, то есть хотя бы одно из утверждений рукописи истинно. Но в ложности первого мы уже убедились. Следовательно, истинно второе: британские ученые доказали, что Земля имеет форму чемодана.

Решение. Разумеется, «доказательство» содержит ошибку. Но какую? Рукописи не существует? Ну и что, ее не поздно и сейчас написать. Дело в другом. В первом утверждении говорится о ложности его самого. Как сказано в решении задачи 1.1 (п. 5), в логике не рассматриваются высказывания, говорящие о своей истинности или ложности. В частности, к ним нельзя применять закон исключенного третьего.


Задачи для самостоятельного решения

Задача 1.5. Объясните, почему данные предложения не являются высказываниями. Можете ли вы сконструировать аналогичные по смыслу высказывания? Как вы думаете, истинны ли они?

1. Семь раз отмерь, один раз отрежь.

2. Что нам стоит дом построить: нарисуем – будем жить.

3. Шел дождь.

Задача 1.6. Придумайте несколько высказываний и несколько предложений, не являющихся высказываниями.

Задача 1.7. Являются ли противоположными высказывания:

1) «Нельзя пользоваться калькулятором на уроках математики» и «На уроках математики можно пользоваться калькулятором»;

2) «Андрей выше Мити» и «Митя выше Андрея»?

Задача 1.8. Постройте отрицания к высказываниям, не

пользуясь оборотом «Неверно, что…»:

1) Завтра дальняя дорога выпадает королю.

2) У него деньжонок много.

3) А я денежки люблю.

Задача 1.9. 1) Директор школы категорически возражает против отмены контроля за прическами. Может ли Степа безнаказанно покрасить волосы в малиновый цвет?

2) Директор школы категорически возражает против отмены решения о запрете контроля за прическами. Может ли Степа безнаказанно покрасить волосы в малиновый цвет?

Задача 1.10*. Житель острова Крит говорит: «Все критяне лжецы». Истинно или ложно это высказывание? (В этой задаче Крит считается островом рыцарей и лжецов.)

Задача 1.11. К каждому из высказываний сформулируйте отрицание. Определите, что верно: утверждение или его отрицание.

1) Сумма двух двузначных чисел – двузначное число.