Где и – стандартные отклонения (дисперсии) измерений, а – среднее значение их коммутатора. В случае положения и импульса это приводит к стандартному соотношению неопределённости.
Принцип неопределённости отражает фундаментальную черту квантового мира: вероятность. В классической механике точное знание начальных условий позволяет с абсолютной точностью предсказать будущее состояние системы. В квантовой механике это невозможно; можно лишь определить вероятность различных исходов.
Этот принцип имеет далеко идущие последствия для философии и практики науки. Он показывает, что природа на фундаментальном уровне не является строго детерминированной, а подчиняется вероятностным законам. Это понимание сыграло ключевую роль в формировании нового мировоззрения, основанного на идее ограниченности знания и предсказуемости в квантовом мире.
Одним из центральных принципов квантовой механики является принцип суперпозиции, который утверждает, что квантовая система может находиться в нескольких состояниях одновременно до тех пор, пока не произведено измерение. Эта концепция радикально отличается от интуитивных представлений классической физики, где объекты всегда находятся в определённом состоянии. Принцип суперпозиции тесно связан с волновой функцией и уравнением Шрёдингера – математическими основами квантовой теории.
Волновая функция, описывающая квантовую систему, является решением уравнения Шрёдингера – основного уравнения нерелятивистской квантовой механики:
Здесь – приведённая постоянная Планка, – гамильтониан системы, представляющий её полную энергию. Уравнение Шрёдингера описывает эволюцию волновой функции во времени, определяя, как состояние системы изменяется под действием сил и энергии.
Волновая функция имеет вероятностную интерпретацию: квадрат её модуля даёт вероятность нахождения частицы в точке в момент времени. Эта вероятностная природа фундаментально отличает квантовую механику от классической.
Принцип суперпозиции утверждает, что если и являются возможными состояниями квантовой системы, то их линейная комбинация, где и – комплексные числа, также является допустимым состоянием. В этом смысле квантовая система может одновременно находиться в нескольких состояниях до момента измерения, когда суперпозиция «коллапсирует» в одно из возможных значений.
Одним из наиболее известных доказательств суперпозиции является двухщелевой эксперимент. Когда частицы, такие как электроны, проходят через две узкие щели, на экране позади щелей наблюдается интерференционная картина, характерная для волн. Это свидетельствует о том, что частица проходит через обе щели одновременно, находясь в состоянии суперпозиции, пока не зафиксирован её путь.
Этот мысленный эксперимент, предложенный Эрвином Шрёдингером, иллюстрирует парадокс суперпозиции в макромире. Кот, помещённый в коробку с устройством, зависящим от квантового события, находится в состоянии суперпозиции – одновременно жив и мёртв – до тех пор, пока наблюдатель не откроет коробку.
Суперпозиция играет ключевую роль в работе квантовых компьютеров. Кубиты, в отличие от классических битов, могут находиться в состоянии суперпозиции, что позволяет квантовым компьютерам выполнять вычисления параллельно и существенно увеличивать их мощность.
Принцип суперпозиции привносит в науку новые вопросы о природе реальности и роли наблюдателя. Вопрос о том, как и почему происходит «коллапс» суперпозиции при измерении, до сих пор остаётся открытым. Это ставит перед нами глубокие философские вызовы, заставляя переосмыслить такие понятия, как объективная реальность и детерминизм.