Модель абсолютно черного тела. АЧТ – это не вся сфера, а только дырочка, в которую попадает свет и оттуда уже не вылетает.

Рис. 5


Естественно, как любой нагретый объект, черное тело излучает в широком диапазоне длин волн, причем, по мере нагрева пик излучения смещается в коротковолновую (высокочастотную) область. Ближайший аналог АЧТ – нагретый до красноты или белого каления кусок металла: чем выше температура куска металла, тем белее его свечение.

Так вот, расчеты, проведенные в соответствии с классической физикой, давали очень хорошее совпадение с экспериментом в области длинноволнового излучения (для не сильно нагретых тел), но для тел, нагретых сильно, то есть излучающих в области коротковолновой, классическая физика давала абсурдный результат – тело должно было излучать бесконечно большую энергию!

Это было крайне неприятно – увидеть такое в расчетах!


Зависимость энергии, излучаемой АЧТ, от длины излучаемых волн и температуры его нагрева. Крайняя правая линия, улетающая в бесконечность, – результат теоретического предсказания классической теории для тела, нагретого до температуры 5000 К. Прочие линии – результат эксперимента.

Рис. 6


Эту нелепицу устранил Макс Планк, сделав допущение, что энергия из АЧТ не льется сплошным волновым потоком, а излучается «поштучно», порционно – квантами. Квант есть маленькая неделимая порция. Причем энергия кванта пропорциональна его частоте, а коэффициентом пропорциональности служит некая величина, которую потом назвали «постоянной Планка».

Оформив это свое предположение математически, Планк внес поправки в формулы, и они дали прекрасное совпадение с экспериментом.

Сам Планк в свое предположение о квантах не верил. Ему казалось, что когда-нибудь его вынужденное допущение будет устранено. Однажды Планк гулял со своим сыном-подростком (которого через много лет казнил Гитлер) и на вопрос мальчика, чем отец занимается, ответил, что он или сделал открытие на уровне Исаака Ньютона, или занимается какой-то странной нелепицей.

В общем, Макс Планк, стоявший у истоков квантовой физики, человек, с которого кантовая физика началась! – в кванты не верил.

Вторым человеком, заложившим краеугольный камень в квантовую физику, был Эйнштейн со своей работой по фотоэффекту. И ему квантовая физика жутко не нравилась! Но он, как и Планк, был вынужден строить ее здание – сама природа заставила.

В двух словах напомню историю с фотоэффектом. Дело было так.

В XIX веке открыли явление фотоэффекта – при облучении металла светом из металла начинают выбиваться электроны. Картинка ниже наверняка покажется вам знакомой, и немудрено – вы видели ее на уроках физики.


Световой поток вышибает электроны из катода лампы, и под действием электрического поля они устремляются к аноду, замыкая цепь.

Рис. 7


Как рассуждали представители классической физики эпохи стимпанка? Ну, если свет – это волна, то поливая световым потоком металл, как из шланга, мы постепенно накачиваем электроны энергией, и когда электрон накопит энергию, достаточную для того, чтобы оторваться от ядра атома, он вылетит. Стало быть, чем интенсивнее мы «поливаем» электроны, тем больше будет фотоэффект. А от цвета света, то есть от частоты излучения, эффект зависеть не должен. Однако результат эксперимента оказался полностью противоположным. Оказалось, энергия вылетающих электронов связана не с интенсивностью света (ярче, темнее), а почему-то с его частотой. И при достижении какой-то критически низкой частоты, электроны переставали выбиваться даже при высочайшей интенсивности светового потока.