Из-за невозможности выполнить регулирующую функцию в динамически меняющейся системе быстрое развитие получили приводы с появлением дополнительной вспомогательной подсистемы – гидропневмопривода\электропривода. Чтобы управлять движением силового привода, сразу же возникала необходимость установки позиционера, концевых выключателей и других устройств, обеспечивающих синхронизацию движения привода с заданием. Т. е. вместе с приводом регулирующий клапан получил силовую составляющую. Ручной маховик был заменен на управляемый силовой (пневматический, гидравлический, электрический) привод.
С появлением позиционера клапан стал получать команды и регулировать собственные параметры действия (например, снимать рассогласование между отдельными элементами клапана) в соответствии с логикой процесса регулирования. Поскольку позиционер получил возможность включать в себя и информационные инструменты, получать данные от датчиков и преобразовывать собственную диагностическую информацию, получаемую от собственных сенсоров, то он стал в целом и преобразователем информации и имеет возможность предлагать оператору решения на основе обработки внутренней информации. В частности, встроенная программа диагностики FieldCare дает возможность получать тревожные сигналы и тренды о состоянии и вероятном накоплении неисправностей в клапане.
Впервые проблема различий в отношении к клапану как элементу трубопроводной сети с соответствующими параметрами и расчетными характеристиками, и, как к исполнительному устройству и звену регулирования была наиболее четко поставлена в работе Иткиной Д. (Иткина Д. М. «Исполнительные устройства систем управления в химической и нефтехимической промышленности. Москва, Химия, 1984. 252с.).
В работе было показано, что статическая характеристика объекта регулирования и исполнительного устройства регулирующего органа чрезвычайно связаны. При структурном анализе системы регулирования само исполнительное устройство поэтому часто относили к объекту, и коэффициент усиления исполнительного устройства объединяли с коэффициентом усиления объекта. Это приводило к тому, что статическим характеристикам исполнительного устройства регулирующего органа уделялось мало внимания, а порой они вообще выпадали из поля зрения проектировщика.
Ранее учету того, что расходная характеристика исполнительного устройства регулирующего органа играет существенную роль не только в статике, но и в динамике системы регулирования значения также не придавалось. Однако неправильный выбор расходной характеристики часто приводил к снижению статической и динамической точности, к увеличению времени переходного процесса, и даже к автоколебательному режиму.
Со стороны контура регулирования к клапану предъявляются высокие требования. В связи с ростом быстроты и непрерывности протекания процессов, усложнением процесса регулирования, развитием сложных алгоритмов, по которым производится регулирование, клапан должен отвечать все большим требованиям по снижению инерционности, быстроте и точности позиционирования.
Как было показано выше, в наибольшей степени выполнение этих требований стало возможным с развитием цифровых контуров регулирования. В них стала реальной беспрепятственная и помехоустойчивая работа клапана с возможностью цифровой обработки сигналов. Следствием стало, например, развитие новых видов контуров регулирования в составе АСУ ТП с нечеткой логикой и возможностью адаптации, где обработка сигнала производится непосредственно внутри контура, а в систему АСУ ТП поступает уже обработанная информация. При тонком регулировании используются клапаны, способные распознавать переходные процессы и снижать зависимость от них. Например, клапан NelesACE имеет встроенный алгоритм распознавания переходного процесса при регулировании, позволяющий снизить отклонения до минимума и обеспечить «опережающее» регулирование, устраняющее т. н. «перерегулирование», рис. 2. Его можно эффективно использовать, к примеру, в контурах подачи дорогих химикатов, в системах питания участков пароохладителей пароперегревателей и т. п.