В тоже время технологический регламент, рассчитываемый по условиям материального баланса, задает, как правило, значительно больший возможный допуск на процесс, чтобы поле рассеяния параметров оказалось внутри допуска. Но, именно благодаря этому, создается возможность оптимизации.
Учитывая многообразие связей между параметрами в ходе реализации технологического процесса, статистические выходные характеристики могут подсказать и наличие неучтенных факторов. А после анализа таких параметров можно будет задавать такой параметр, и установить измерительный контур регулирования для осуществления этого параметра. Так, вместе с уравнениями теплового и материального баланса желательно учитывать и погрешности параметров технологического процесса – например, от колебаний давления, уровня вакуума, концентрации химикатов, пульсаций расхода на сами показатели материального баланса. Трудности состоят в том, что иногда параметры и выходные характеристики формируются в ходе технологического процесса и не могут быть проконтролированы и заданы изначально. Сюда же относится и проблема нелинейности исходных зависимостей, что может обусловить недопустимость их линеаризации.
В целом, задача расчета погрешностей контуров регулирования сводится к следующей схеме:
1. Аудит технологической схемы, сбор расчетных данных по процессу и расчет погрешностей по контурам регулирования. При наличии устоявшейся технологической схемы и вышедшего на режим технологического процесса снятие при помощи программы FIELD CARE показателей процесса и «алмазной» диаграммы. Установление трендов процесса.
2. Анализ технологической схемы с учетом данных п.1. Анализ, расчет и прогнозирование погрешностей элементов входной и выходной информации, характеристики их распределений и зависимостей между ними. Выделение быстродействующих возмущений, например, колебаний параметров процесса и медленно действующих факторов (зарастание, износ и др.). Расчет точности технологического процесса на различных этапах жизни контура регулирования. Расчет точности контура регулирования при различной заданной производительности и др. Расчет точности, как по одному доминирующему фактору, так и по нескольким.
3. Совершенствование технологической схемы на основе расчета погрешностей по процессу и накопления критических ошибок в процессе. Выделение критических контуров регулирования. Замена клапанов на более совершенные, с учетом анализа и синтеза точности.
Примером может стать расчет в программе NELPROF клапанов регулирования подачи химикатов на участках дозирования или химводоподготовки. Так, задавая основную среду, входные параметры, и рассчитывая процесс при минимальных отклонениях концентрации, можно получить весьма существенные снижения отклонений в рН воды.
Пример расчета по отклонениям процесса регулирования химикатов при помощи клапана NELES ACE приведен ниже:
Пример
На сегодняшний день дозаторы обладают чувствительностью +-0,2%. Для выбора клапана необходим ряд данных: производительность, требуемая концентрация, размер привода, линия подачи химикатов и дифференциал давления. По программе NELPROF, разработанной компанией METSO AUTOMATION, рассчитывается клапан, оптимально подходящий для данных условий. Пример в табл. демонстрирует выбор клапана R- серии DN200. Случай 1 дает положение клапана при данных параметрах процесса. Случаи 2 и 3 показывают изменения скорости потока, вызванные изменением положения открытия клапана: 1 шаг для случая 2 и ½ шага для случая 3. Интересно отметить, что клапан серии «R» NelesACE позволяет регулировать с точностью до +-0,014% около точки установки посредством полных шагов (импульсов) и до +-0,007% – полушагами. Таким образом, точность регулирования может быть повышена как минимум в 30 раз по отношению к первоначально заданной погрешности регулирования.