Галилей, однако, полагал, что мгновенность света – лишь гипотеза, и придумал, как ее проверить. Для этого нужны два человека с фонарями, которые можно открывать и закрывать – сейчас бы сказали: включать и выключать. Сначала они, находясь вблизи, тренируются включать фонарь, увидев свет другого фонаря. Затем расходятся на большое расстояние. Первый включает фонарь, увидев свет которого, включает свой фонарь второй. И первый измеряет время от момента, когда он включил свой фонарь, до момента, когда увидел свет второго фонаря. За это время свет прошел путь туда и обратно.
Если второй фонарь откроется так же быстро, как и на близком расстоянии, – пишет Галилей, – значит, свет доходит мгновенно, а если свету требуется время, то расстояния в три мили хватило бы, чтобы обнаружить задержку. Если же опыт делать на расстоянии, скажем, 8–10 миль, то увидеть слабый свет от далекого фонаря можно, используя телескоп.
Судя по словам Галилея, он проделал такой опыт лишь на расстоянии одной мили и задержку не заметил. И все же высказал догадку, что свет распространяется не мгновенно, хоть и необычайно быстро.
Отец современной физики не объяснил, почему трех миль хватило бы, чтобы обнаружить не-мгновенность света, и зачем тогда увеличивать расстояние до 10 миль. Если минимальным промежутком времени счесть один удар пульса, то проделанный им опыт означал, что свет прошел две мили за время, меньшее секунды, то есть со скоростью как минимум в 10 раз большей скорости звука. А если бы задержки не обнаружилось и на расстоянии 10 миль, это означало бы, что скорость света как минимум в 100 раз больше скорости звука.
Галилей не виноват, что на самом деле скорость света больше скорости звука в миллион раз. Если бы он это заподозрил, то мог сообразить, что земных миль для его опыта не хватит, и вспомнил бы открытые им спутники Юпитера. Ведь, вращаясь, спутник играет роль фонаря, который открывается, выходя из тени Юпитера, и закрывается, заходя в его тень. Конечно, впрямую для опыта Галилея такой фонарь не годится – открывается безо всякой команды через равные интервалы времени. Но опыт можно изменить, заметив, что земной наблюдатель не сидит на месте, даже вглядываясь в телескоп: вместе с телескопом и с планетой Земля он движется вокруг Солнца. Когда наблюдатель приближается к Юпитеру, каждый следующий “восход” спутника наблюдается раньше “положенного” (усредненного), потому что первому лучу от спутника надо пройти меньшее расстояние до Земли. Первый луч прибудет раньше на долю периода, пропорциональную скорости Земли и обратно пропорциональную скорости света. Значит, скорость света можно вычислить, измеряя опережение (или запаздывание) восхода спутника Юпитера.
До такого способа сам Галилей не додумался, хотя в его духе были и земные применения астрономии, и приложение земной физики к пониманию небесных явлений. Он же предложил использовать телескоп в земном опыте по измерению скорости света. А открыв спутники Юпитера и измерив периоды их обращения, разглядел в этом небесные часы “с боем” в момент восхода каждого спутника. Такие часы, доступные всем (у кого есть телескоп), сообразил Галилей, можно использовать для определения географической долготы. А это было жизненно важно для дальнего мореплавания и для экономики.
Так что отец современной физики не только изобрел ее, но и продемонстрировал взаимосвязь науки, техники и экономики.
В физике Галилея проявилось хитрое взаимодействие теории и эксперимента в поиске фундаментальных законов природы. Ясно, как важно проверять закон со все большей точностью. Однако нередко малая точность измерений помогала делать открытия. Например, важнейший для Галилея закон о том, что период колебаний маятника не зависит от амплитуды колебаний, выполняется тем точнее, чем меньше амплитуда. Поэтому, если бы Галилей проверял этот закон не своим пульсом, а очень точным хронометром, ему было бы труднее.