Рис. 3.14. Мельница-вентилятор двухопорного типа: 1 – вал; 2 – упорный подшипник; 3 – броня улитки; 4 – приемный патрубок; 5 – предвключенные била; 6 – выступ мелющей лопатки; 7 – электродвигатель; 8 – штурвал для прижатия люка; 9 – окно для замены лопаток и бил
Предвключенные била измельчают уголь до его поступления в ротор и увеличивают равномерность распределения топлива по его окружности. Опыт эксплуатации мельниц-вентиляторов подтверждает, что замена обычной М-В на М-В с предвключенными билами значительно уменьшает долю грубых фракций с размером более 1000 мкм.
3.1.4. Пылеконцентраторы
В последние десятилетия при использовании высоковлажных и низкокалорийных твердых топлив на тракте между мельницей и горелкой стали устанавливать пылеконцентраторы (рис. 3.15). Необходимость их установки объясняется следующим образом.
Рис. 3.15. Схема пылеконцентратора: 1 – корпус; 2 – завихритель; 3 – рассекатель; 4 – основной отвод; 5 – сбросной отвод
При сжигании, например, болгарского лигнита с Q>i>r = 5,46 МДж/кг и W>r = 56 % теоретическая (адиабатическая) температура горения составляет всего 1373 К (1100 °С). Столь низкое значение ϑ>a объясняется не только большой влажностью, но и сушкой топлива газами рециркуляции для получения достаточно подсушенной пыли. Подача в ядро горения вместе с топливом большого количества инертных газов приводит к дополнительному снижению теоретической температуры горения топлива. Расчеты показывают, что, например, для получения достаточно сухой пыли (W>pf <20 %) при размоле болгарских бурых углей доля газа, идущего на сушку, а затем вдуваемого вместе с пылью в ядро факела в виде сравнительно холодного агента (140–200 °С), составляет 40–60 % всех топочных газов. Кроме того, наличие в первичной аэросмеси такого большого количества инертного продукта и водяного пара уменьшает концентрацию кислорода, что также затрудняет нормальное развитие топочного процесса.
Для надежного сжигания высоковлажных углей типа болгарского бурого, путем повышения температуры и концентрации кислорода в ядре факела при сохранении всех преимуществ системы с прямым вдуванием, был использован пылеконцентратор, позволяющий отделить часть слабозапыленного влажного сушильного агента и сбросить его в верхнюю часть топки.
Принцип действия пылеконцентратора заключается в разделении исходной пылегазовой смеси на сильно– и слабозапыленные потоки за счет различных гидродинамических свойств твердой и газовой фазы. В центробежном пылеконцентраторе, схема которого приведена на рис. 3.15, поток аэросмеси проходит через лопаточный завихритель и приобретает вращательное движение. За счет действия центробежной силы пылевые частицы отжимаются к внутренней поверхности корпуса, увеличивая концентрацию несущего газового потока. Рабочий процесс в пылеконцентраторе заканчивается выделением в самостоятельные отводы части несущего газового потока, имеющего большую, по сравнению с исходным потоком, концентрацию пыли и другой части с соответственно меньшей, чем у исходного, концентрацией пыли.
Основными режимными параметрами пылеконцентратора являются g>c и l, где g>c – это доля пыли, поступающей в основной отвод, то есть
g>c = G>осн /G>о, (3.2)
а l – доля газа (несущего агента), также поступающего в основной отвод:
l = Q>осн/Q>0. (3.3)
Слабозапыленный поток, включающий в себя остаток пыли G>сбр = G>0−G>осн, выносится газовым агентом Q>сбр = Q>о−Q>осн в сбросной пылепровод и далее в сбросную горелку.
Глубина разделения пылегазового потока выражается как отношение:
g>c/l = (G>ocн · Q>0)/(G>0 · Q>осн). (3.4)
Следовательно,