Широкой общественности Галилей известен, прежде всего, конфликтом с католической церковью и преследованиями со стороны инквизиции, как «борец» за «истинную» гелиоцентрическую модель Коперника против «ложной» геоцентрической модели Птолемея. В действительности, Галилей не нашел прямых доказательств вращения Земли вокруг Солнца (как уже упоминалось, таковым могло быть только обнаружение годичных параллаксов звезд), но привел столько косвенных аргументов, что теория Коперника была принята многими современными ему учеными. Для самого же Галилея, похоже, истинность гелиоцентризма не подлежала сомнениям – он был заворожен простотой и изяществом объяснения возвратных движений планет с единой точки зрения. Очевидно, что несложно придумать миллион теорий для объяснения одного-единственного явления, но количество теорий, объясняющих единым образом миллион явлений, существенно меньше.

Тихо Браге и Кеплер

В то же время, что и Галилео Галилей, жил и, главное, работал великий ученый, влюбленный в астрономию, Тихо Браге (Tyge Ottesen Brahe 1546—1601), вначале в Дании, где он основал несколько обсерваторий на островах, а в конце концов – в Праге.

Мы не будем перечислять здесь его неисчислимые заслуги перед астрономией. Но вот главная заслуга перед космологией – это приглашение молодого тогда и одаренного Иоганна Кеплера (Johannes Kepler 1571—1630) для математической обработки своих результатов наблюдений за планетами.

Кеплер проделал неимоверную работу, тщательно изучил наследие Тихо Браге и вывел три, ставших знаменитыми, закона движения планет. И недаром на памятнике в Праге они стоят рядом, Тихо Браге и Иоганн Кеплер.


Вот эти три замечательных закона:


I. Планеты двигаются по эллипсам, в одном из фокусов которых находится Солнце.


II. Радиус-вектор каждой планеты заметает равные площади за равные промежутки времени.


Любопытно, что второй закон был сформулирован Кеплером даже раньше первого. Возможно, что именно это позволило ему «угадать» первый закон. Думаю, необходимо отметить следующее важное обстоятельство. Несмотря на то, что формулировка первых двух законов указывает, как бы, на гелиоцентрическую картину мира, они, на самом деле, нисколько не противоречат геоцентрической картине, если вот это самое «как бы» вставить прямо в первый закон: «Планеты как бы двигаются по эллипсам…». Получается, что гелиоцентрическая теория может рассматриваться не более как красивый математический прием, позволяющий значительно упростить вычисления, а вот «истина» – за Птолемеем, на чем и настаивала церковь. При любой из этих формулировок справедлив третий закон.


III. Квадраты периодов обращения планет пропорциональны кубам больших полуосей эллипсов их орбит.


В отличие от первых двух, третий закон сравнивает разные планеты и находит в их движении общие черты, что говорит об общей причине сходства траекторий. Да и относительные расстояния планет от Солнца можно найти, лишь приняв гелиоцентрическую систему. Более подробный анализ мы отложим «на потом», а пока отметим лишь, что законы эти, во-первых, эмпирические и, во-вторых, кинематические, т.е., без указания причин такого, а не другого, движения. Именно поэтому они и не позволяют сделать выбор между Птолемеем и Коперником.

Иоганн Кеплер был, несомненно, приверженцем теории Николая Коперника. Но при этом вовсе не «слепым» последователем. Он сделал радикальный шаг вперед – отказался от сфер и окружностей. Эллипс – всего-навсего небольшое обобщение окружности, но каков эффект! Уже нет нужды требовать «естественной» равномерности, т.е., постоянной по величине скорости – гораздо естественнее неравномерность, но при этом есть определенная закономерность, выраженная вторым законом. Математически не менее изящная, чем в оригинальной модели Коперника. Все резко упростилось. Вдобавок, еще и третий закон, намекающий на общую причину движения планет. Очень научно, в духе проповедуемого Галилео Галилеем научного метода. Потому-то и кажется странным, что именно Галилей не принял теорию Кеплера. Возможно, из-за явного отказа от окружностей и равномерности. Для Галилея равномерность движения было основным в его формулировке закона инерции, причем, похоже, под таковым он понимал не только равномерное прямолинейное движение (как учили в школе), но и равномерное движение по окружности.