Если бы объёмы были разнородны в трёхмерном Декартовом пространстве, то они бы не поместились в Декартовы координаты и представляли бы собой разнородные дискретности, что не имело бы никакого положительного математического и физического решения. Это я назвал бы условно принципом «гармошки пространства», потому что он отражает заполненность и геометрическое движение данных координат и их производных по принципам, которые вписываются только в однородную геометрию нашего мира.
Единица Объёма
Любой объём должен быть алгоритмизирован, иначе это лишь произвольные вектора «условного» объёма.
Когда мы имеем некую фигуру в пространстве, которую называем объёмом, то мы должны установить, что у этой фигуры, в зависимости от того, какую часть её мы рассматриваем, есть касательная от которой надо провести прямые линии, которые опишут эту касательную перпендикулярно вверх, перпендикулярно вниз, экстраполируют длину касательной вперёд, с двумя отрезками, соединяющими экстраполированную прямую с касательной и двумя поперечными отрезками, которые создадут непрерывность вектора по отношению к данной фигуре. Это и будет алгоритмизированным объёмом данной касательной, который будет составлять 9/10 отрезков от касательной, сама же касательная 1/10 от объёма и будет называться единицей объёма.
Данный отрезок будет являться отрезком места и времени в искривлённом пространстве-времени Эйнштейна (или пространстве Минковского, если рассматривать только геометрическую составляющую вопроса), 9/10 отрезков начального объёма будут площадью через которую произошло искривление к данному объёму. И все Начальные Объёмы будут показывать изначальный векторный рисунок отрезков искривления.
a
c d (рис.1) b
Что объясняет это решение
Данное можно проводить с любой геометрической фигурой и объёмом и через него мы вычислим алгоритмическое обоснование места в пространстве данной вещи. Также оно покажет как бы степень «проваленности» в пространстве исходя из теории относительности об искривлении пространства и времени. И насколько я представляю в математике дифференциальные и интегральные исчисления, когда находится производная и первообразные, имеют целью описание движения, как писал Лейбниц с максимально увеличивающимся делением отрезков f (x) ^f (y), здесь же мы имеем дело с движением внутри пространства для вычисления первоначальной, которая даст понимание геометрического алгоритмизирования данного объёма в конкретном пространстве. И получается, что объект есть лишь 1/10 от настоящего пространственного объёма, в который он вписан. И всегда только 1/10, и 9/10 начальный объём, потому что десятеричность является решением законченного цикла деления на отрезки пространства в данном гипостазированном пространстве.
Крайне важным является понятие «касательной». У каждой фигуры, объёма и вещи есть касательная, которая отрезок, который и вписан другими девятью данными отрезками начального объёма. Если всю фигуру описывать целиком во всех отрезках, то, например, у куба 12 отрезков, значит будет (12*10) =120 изначальных отрезков, каждые 9/10 из которых от каждого отрезка будут первоначальными.
Особенным образом обстоит дело с шаром и сферой, и любым шарообразным или элипсойдным объёмом, потому что в силу того, что он состоит из огромного числа отрезков, которые в свою очередь можно также удлинять и сокращать за счёт соседних дискретных векторов, которые обозначены отрезками, является сверх фигурой, которая имеет в виде исключения от всех остальных фигур приближающиеся к бесконечности первоначальные и потому в физике космоса именно сферы и эллипсы являются планетами и так вписаны в гравитационное пространство, что они имеют суперискривления, которые дают им силу движения в эйнштейновском пространстве относительных систем отсчёта.