. Что касается трёхмерной геометрии, то здесь никаких особых проблем не предвиделось. Из исторической практики многих тысячелетий следовало, что она прекрасно справлялась с осуществлением пространственных измерений. Представления же о трёхмерности самого пространства стало формироваться, вероятно, лишь после того, как Галилей обратил внимание на то, что всякая точка в пространстве является началом трёх взаимноперпендикулярных направлений.

Но это было лишь начало. Решающая же роль в активном распространении и закреплении представления о трёхмерном пространстве, несомненно, принадлежит Декарту, который был твёрдо убеждён, что пустоты в мире нет, и вещество, по существу, совпадает с пространством: «Пространство, или внутреннее место, также разнится от телесной субстанции, заключённой в этом пространстве, лишь в нашем мышлении. И действительно, протяжение в длину, ширину и глубину, составляющее пространство, составляет и тело»>10. Именно Декарт первым «физикализировал» пространство, считая, что оно обладает непроницаемостью. Он же заложил основы аналитической геометрии в качестве метода объединения геометрии с алгеброй, открыв дорогу применению системы координат, названной его именем. Но это значит, что рассматриваемая в геометризованной СТО трёхмерность пространства целиком обусловливалась мировоззрением Декарта и оказывалась вне его условной и несостоятельной. Между тем всё, что так или иначе касалось проблем абсолютного и относительного пространства, имеющих отношение к основам СТО, было связано исключительно с мировоззрением Ньютона, а вовсе не Декарта.

А что же Ньютон, которому в год кончины Декарта исполнилось всего семь лет? Он, конечно же, в период своей учёбы в Кембридже знакомится с трудами Декарта, но в его мировосприятии мерность пространства не только не отождествляется с мерностью вещества, заполняющего его, но и сама по себе мерность оказывается результатом непрерывного движения. Это следует со всей очевидностью из его трактата «О квадратуре кривых», изданного, кстати, когда автору пошёл седьмой десяток (стало быть, сомневаться в устойчивости его взглядов на мир не приходится): «Линии описываются и по мере описания образуются не приложением частей, а непрерывным движением точек, поверхности – движением линий, объёмы – движением поверхностей, углы – вращением сторон, времена – непрерывным течением и т. д. Такое происхождение имеет место и на самом деле в природе вещей и наблюдается ежедневно при движении тел»>11. Оставаясь на такой позиции, приходим к выводу, что участвующая в образовании линейной (одномерной) формы точка сама по себе пространственной мерности лишена. Казалось бы, её и представить в таком случае совершенно невозможно. Однако всё обстоит по-другому: классическое естествознание, которое твёрдо стоит на том, что пространство однородно (все точки в нём равнозначны) и изотропно (все направления в нём равноправны), предоставляет именно такую возможность. Рассуждения очень просты: во-первых, если все направления равноправны, то это равноправие должно проявляться и в одной-единственной точке; во-вторых, если все точки в пространстве равнозначны, то равноправие направлений должно проявляться в любой из точек. Отсюда общий вывод: однородное и изотропное пространство может быть представлено как бесконечное множество точек, каждая из которых является центром бесконечного множества направлений.

Но, возможно, это и есть то самое абсолютноепространство Ньютона, которое «по самой своей сущности, безотносительно к чему бы то ни было внешнему, остаётся всегда одинаковым и неподвижным»