5) аналитизм – примат аналитической деятельности над синтетической в мышлении ученых, отказ от абстрактных спекуляций, характерных для античности и Средневековья;
6) геометризм – утверждение картины безграничного однородного, описываемого геометрией Евклида и управляемого едиными законами космического универсума. Еще одним важнейшим итогом научной революции Нового времени стало соединение умозрительной натурфилософской традиции античности и средневековой науки с ремесленно-технической деятельностью, с производством. Кроме того, в результате этой революции в науке утвердился гипотетико-дедуктивный метод познания.
В прошлом веке физики дополнили механистическую картину мира электромагнитной. Электрические и магнитные явления были известны давно, но изучались обособленно друг от друга. Дальнейшее их изучение показало, что между ними существует глубокая взаимосвязь, что заставило ученых искать эту связь и создать единую электромагнитную теорию. Наибольший вклад в создание этой теории внесли датский физик X. Эрстед (1777–1851), английские физики М. Фарадей (1791–1867) и Д. Максвелл (1831–1879) и др. В результате их открытий было показано, что в мире существует не только вещество в виде тел, но и разнообразные физические поля.
В конце XIX – начале XX вв. в естествознании были сделаны крупнейшие открытия, которые коренным образом изменили представления о существующей на тот момент картине мира. Прежде всего это были открытия, связанные со строением вещества, и открытия взаимосвязи вещества и энергии.
Если раньше последними неделимыми частицами материи, из которых состоит природа, считались атомы, то в конце прошлого века были открыты электроны, входящие в состав атомов. Электрон открыл в 1895 г. английский физик Д. Томсон (1856–1940). Позднее было установлено строение ядер атомов, состоящих из протонов (положительно заряженных частиц) и нейтронов (лишенных заряда частиц).
Первую модель строения атома предложил английский ученый Э. Резерфорд (1871–1937). Согласно этой модели атом уподоблялся миниатюрной солнечной системе, в которой вокруг ядра вращаются электроны. Такая система была, однако, неустойчивой: вращающиеся электроны, теряя свою энергию, в конце концов должны были упасть на ядро. Но опыт показал, что атомы являются весьма устойчивыми образованиями и что для их разрушения требуются огромные силы. В связи с этим прежняя модель строения атома была значительно усовершенствована в 1913 г. выдающимся датским физиком Н. Бором (1885–1962), который предположил, что при вращении по т. н. стационарным орбитам электроны не излучают энергию. Такая энергия излучается или поглощается в виде кванта, или порции энергии, только при переходе электрона с одной орбиты на другую.
В 30-е гг. XX в. было сделано другое важное открытие, которое показало, что элементарные частицы, например электроны, обладают не только корпускулярными, но и волновыми свойствами. Таким путем было доказано экспериментально, что между веществом и полем не существует непроходимой границы: в определенных условиях элементарные частицы вещества обнаруживают волновые свойства, а частицы поля – свойства корпускул. Это явление получило название дуализма волны и частицы.
Н. Бор сформулировал свой знаменитый принцип дополнительности, согласно которому некоторые эффекты и процессы можно объяснить волновой теорией, другие – квантовой. Поэтому следует использовать разные формулы и из волновой, и из квантовой теорий для более полного описания процессов. Именно в это время возникает новая волновая, или