Пространственное впечатление

Пространственное впечатление возникает из слухового восприятия в частично или полностью закрытом пространстве. Пространственное впечатление складывается из ряда составляющих:

• ощущение, что слушатель находится в одном помещении с источником звука;

• представление о размерах помещения;

• гулкость;

• пространственность.

Пространственное впечатление основывается на сознательном различении отраженного и прямого звуковых сигналов.

Гулкость

Гулкостью называют такое ощущение, что кроме прямого звука имеется и отраженный звук, воспринимаемый не как повторение сигнала. В больших помещениях гулкость зависит от отношения поздней энергии отзвука к ранней. К ранней относится энергия прямого звука и отражений, которые при звучании речи приходят примерно за первые 50 мс, а при звучании музыки – за 80 мс после прихода прямого звука.

Эхо

Эхом называют такие повторения звукового сигнала, при которых первичный и вторичный сигналы воспринимаются во времени, а в некоторых случаях и в пространстве, как самостоятельные слуховые объекты. Если повторение сигнала обусловлено отражениями, то для раздельного его восприятия необходимое время запаздывания – около 50 мс, в зависимости от вида сигнала. В тех случаях, когда периодические повторения сигнала следуют так быстро друг за другом, что уже не воспринимаются слухом как отдельные сигналы, говорят о многократном эхе.

Аналоговый и цифровой сигналы

Как известно, преобразование аналогового (непрерывного во времени) сигнала в цифровой происходит в три приема: выборка, квантование и кодирование.

Сначала аналоговый сигнал преобразуется в последовательность аналоговых же выборок, полученных через равные промежутки времени. Квантование аналогового сигнала представляет собой выбор конечного числа уровней, которые, как правило, равномерно распределены в диапазоне от – U до +U шкалы входного сигнала аналого-цифрового преобразователя (АЦП). Количество уровней квантования почти однозначно связывается с выходным цифровым сигналом посредством кодирования. Наиболее распространенным является прямое двоичное кодирование.

Если спектр преобразуемого аналогового сигнала располагается в полосе частот от 0 до F, то частота выборки (или частота дискретизации) не должна быть менее 2F. Таким образом, если реальный аналоговый сигнал содержит частотные компоненты от 0 Гц до 20 кГц, то частота дискретизации такого сигнала должна быть выбрана не меньше 40 кГц.

На этот счет существует теорема Шеннона-Котельникова и частота Найквиста (F) как следствие из данной теоремы. Однако теорема не содержит утверждения о точном восстановлении аналогового сигнала при указанном условии (> 2F). На самом деле восстановленный сигнал имеет произвольные амплитуду и фазу (в конкретных пределах). Статистически достоверное восстановление исходного аналогового сигнала имеет место при частоте выборки не менее 5F.

Отношение сигнал/шум на выходе N-разрядного АЦП в идеальном случае равно (6N-6) дБ, поскольку существует неустранимая погрешность квантования (так называемый шум квантования) равная половине разности между соседними уровнями квантования, что эквивалентно потере 6 дБ в отношении сигнал/шум. Повышение частоты преобразования существенно снижает интермодуляционные искажения, обусловленные наложением спектров – aliasing (совмещение, алиазинг), – и повышает достоверность восстановления аналогового сигнала. Реальный музыкальный сигнал далек от белого шума (близок к розовому – шуму дождя, прибоя, ветра – то есть шуму, плотность которого спадает с ростом частоты), но шум квантования не зависит от сигнала, если число уровней квантования неизменно и распределение их равномерно. Другое дело – погрешность преобразования, которая действительно зависит от амплитуды и частоты входного сигнала и выражается в реальных нелинейных и интермодуляционных искажениях, то есть паразитных спектральных составляющих.