Есть много причин, по которым компании с головой кидаются в использование данных. Не последнюю роль играет появление сложнейших технологий, позволяющих очень быстро обрабатывать информацию и делать из нее выводы. Но есть и другие объяснения:

● данных очень много;

● в отличие от чувств, они не такие запутанные;

● данные точны, чувства неявны;

● данные – универсальный язык, понятный всем и везде;

● как показывает пример Google и Facebook с их мощнейшими предиктивными алгоритмами, использование данных приносит прибыль;

● данные можно очень эффектно визуализировать.

Все это, конечно, не означает, что данные – это плохо. Неправильно было бы считать, что таблички – зло, а история – благо. Обе составляющие жизненно необходимы бизнесу. Более того, именно способность находить баланс между ними выводит компании в лидеры.

Проблема в том, что слишком велик соблазн фокусироваться только на данных, и баланс сразу смещается. Ведь данные помогают обосновать наши решения, просчитать и снизить риски. Благодаря им мы постигаем поведение потребителей и на основе этого разрабатываем наши продукты и услуги. При помощи данных компании выживают и зарабатывают деньги.

Но это заставляет нас ошибочно полагать, будто данные – все, что требуется для успеха. И мы теряем критичные для процветания бизнеса гибкость, вдохновение, нестандартность мышления. Данные должны и могут быть наполнены смыслом, и использовать их нужно с умом. Нам следует прибегать к ним не только чтобы выразить нечто в цифрах, повысить эффективность и производительность. Но и для того, чтобы задуматься над другими, общечеловеческими вопросами. Что результаты опроса сотрудников говорят об их морали и готовности оставаться в компании еще длительное время? Какие модели поведения поставщиков выявляют применяемые нами алгоритмы и как эти модели связаны с текущими проблемами и вспыхивающими время от времени конфликтами?

В компании, полагающейся не только на данные, но задумывающейся и о смыслах, корпоративные политики и программы не должны быть основаны на цифрах и могут даже вступать с ними в противоречие. Например, статистика требует от компании сократить персонал на 10 %, чтобы сохранить показатели прибыли. Но такой шаг деморализует сотрудников. Более сознательным решением будет снизить другие расходы, но сохранить рабочие места и позитивный настрой в коллективе.

Конечно, это очень простой пример. Но он хорошо показывает необходимость в равной степени ориентироваться и на математику, и на здравый смысл. Чтобы этому научиться, для начала рассмотрим, что мы понимаем под математикой и смыслом, в чем их различие и когда они нужны.

Типы данных: математика и смыслы

Если говорить простым языком, математика в нашем случае – это все данные, проходящие через компанию, а смысл – неосязаемые чувства и представления, связанные с людьми, продуктами, услугами и самими организациями. Чуть усложняя, поясним: математика в этом контексте имеет различные формы – это и алгоритмы, и искусственный интеллект, и данные из социальных сетей, и т. д. Смысл тоже может быть представлен очень по-разному – от миссии компании до значимости бренда и того, как сами сотрудники видят свою компанию.

Организации всегда пользовались данными – проводили опросы, устраивали фокус-группы, верстали бюджеты. Но благодаря скачку в развитии технологий теперь данные просто повсюду. Ниже приведем примеры, поясняющие, почему данные называют «новой нефтью» и почему они столь ценны для бизнеса любого типа.

● Результаты аналитики управляют поведением потребителей. В 70 % случаев подписчики Netflix выбирают контент для просмотра, руководствуясь рекомендациями платформы. Треть всех покупок на Amazon формируется на основе подсказок о том, что еще выбирали покупатели, просматривавшие те же товары, что и вы