Кроме того, искусственный интеллект замечательно проявляет себя в стратегических играх наподобие шахмат – в них мы в точности знаем, как описать все возможные ходы, ноне способны вывести формулу, которая подскажет, какой следующий ход будет наилучшим. В шахматах из-за количества вариантов ходов и сложности игрового процесса даже гроссмейстер не в состоянии сформулировать жесткие правила для предсказания того, какой ход окажется лучшим в той или иной ситуации. А самообучающийся алгоритм может сам с собой сыграть миллионы тренировочных партий – больше, чем сыграет за всю жизнь самый умный и упорный гроссмейстер, – чтобы выработать правила, которые будут приводить его к победе. И поскольку ИИ обучается без явных инструкций, иногда он находит очень необычные и оригинальные стратегии. Иной раз чрезмерно оригинальные.

Если вы не скажете ИИ, какие ходы допустимы, он может отыскать странные лазейки и злоупотребить ими, лишив игру смысла. Например, в 1997 году группа программистов создавала алгоритмы, которые удаленно играли в крестики-нолики друг против друга на бесконечно большом поле. Один из программистов, вместо того чтобы разработать основанную на правилах стратегию, позволил ИИ самостоятельно формировать подход к игре. Внезапно этот ИИ стал побеждать во всех матчах. Его стратегия заключалась в том, чтобы делать ход где-то очень-очень далеко.

Размер нового игрового поля оказывался настолько большим, что компьютер оппонента, пытаясь его у себя воспроизвести, исчерпывал ресурсы оперативной памяти и падал с ошибкой, так что ему засчитывалось техническое поражение[8]. У большинства программистов, работающих с ИИ, есть в запасе похожие истории – о том, как алгоритмы удивляли их тем, что находили неожиданные решения. Иногда такие решения гениальны, а иногда создают проблемы.



Самое основное, в чем нуждается ИИ, это конкретная цель и набор данных для обучения. Получив их, он начинает гонку, и неважно, какова цель: принять решение о выдаче кредита, как это делает специалист-человек, предсказать, приобретут ли покупатели определенный носок, добиться максимального счета в видеоигре или же заставить робота преодолеть наибольшее расстояние. В каждом случае ИИ методом проб и ошибок изобретает правила, которые позволят ему добиться цели.

ИНОГДА ЕГО ПРАВИЛА ПЛОХИ

Бывает, что правила, прекрасно помогающие ИИ находить решение, оказываются основаны на неверных предположениях. Например, некоторые из самых причудливых экспериментов я проделывала с продуктом компании Microsoft для распознавания образов, который подбирал теги и описание для загружаемого изображения. Как правило, этот алгоритм правильно распознает предметы: узнает облака, поезда метро или даже ребенка, выполняющего ловкие трюки на скейтборде. Но однажды мое внимание привлекло нечто странное в результатах его работы: ИИ ставил тег «овцы» картинкам, где определенно не было никаких овец. Я изучила проблему и выяснила, что алгоритм видел овец на сочно-зеленых полях вне зависимости от того, были они там на самом деле или нет. Почему же столь специфическая ошибка всплывала вновь и вновь? Возможно, во время обучения этому ИИ в основном показывали овец, находящихся на таких вот полях, и он не понял, что заголовок «овцы» относится к животным, а не к полям. Другими словами, искусственный интеллект смотрел не туда. И, конечно же, когда я показывала ему овец, которые не паслись на пышных пастбищах, он чаще всего ошибался. Овец в автомобилях он обычно помечал как собак или кошек. Овцы в жилых помещениях у него также становились собаками или кошками, то же самое происходило с ягнятами, которых кто-нибудь держал на руках. А овцы на привязи распознавались как собаки. Такие же проблемы у ИИ были с козами: если он видел козу, залезшую на дерево (они так иногда делают), то считал, что это жираф (другой похожий алгоритм называл коз птицами).