Два пути познания

Как накапливаются экспериментальные данные о рождении пространства-времени? Что позволяет ученым судить о первых вздохах новорожденной Вселенной? Здесь начинается новая игра, в которую можно вступить по одному из двух путей познания, совершенно несхожих между собой и абсолютно независимых.

На одной стороне оказываются те, кто изучает бесконечно малое, элементарные частицы. Исходной точкой для них служит то, что вся окружающая нас материя, из которой состоят камни и планеты, цветы и звезды – одним словом всё, включая нас самих, – по-особому организована. Хотя эта материя и кажется нам вполне обычной, в действительности она наделена очень странными свойствами: это связано с тем, что наша Вселенная очень старая и очень холодная. Как указывают самые последние данные, наш “дом” был построен почти четырнадцать миллиардов лет назад, и теперь это жилище по-настоящему ледяное, замороженное донельзя. Для нас, укрывшихся на планете Земля, все, что нас окружает, кажется теплым и комфортабельным, но стоит только выбраться за защитную оболочку атмосферы, и столбик термометра уйдет вниз. Если измерять температуру где-нибудь среди безбрежной пустоты между звездами или в межгалактическом пространстве, термометр покажет всего несколько градусов выше абсолютного нуля – около –270 градусов по Цельсию. Материя современной Вселенной разреженна, очень стара и очень холодна, она совсем не похожа на материю Вселенной в ее младенчестве – раскаленную и невероятно плотную.

Чтобы понять, что с ней случилось в самые первые мгновения ее жизни, необходимо где-то найти или как-то изобрести способ воссоздать для мельчайших частичек материи те исходные условия и температуры. Надо совершить что-то вроде путешествия назад во времени.

Именно это и делается с помощью ускорителей элементарных частиц. При столкновении протонов или электронов, разогнанных до высоких энергий, проявляет себя соотношение Эйнштейна: энергия равняется массе, умноженной на квадрат скорости света. Чем выше энергия сталкивающихся частиц, тем более высокая локальная температура может быть создана и тем больше масса возникающих в результате и оказывающихся доступными для изучения элементарных частиц. Для достижения максимальных энергий требуются гигантские сооружения вроде Большого адронного коллайдера, ускорителя ЦЕРН (Европейской организации по ядерным исследованиям), простирающегося на двадцать семь километров под землей в окрестностях Женевы.

Таким образом возникают крошечные раскаленные области пространства, с температурами, близкими к характерным для Вселенной в самые первые мгновения ее существования, и возвращаются к жизни реликтовые сверхмассивные элементарные частицы, наполнявшие Вселенную в ее первые мгновения, но давно уже навсегда исчезнувшие. Благодаря ускорителям эти частицы словно восстают на краткий миг из ледяного гроба, где пребывают в анабиозе, чтобы дать нам возможность изучить себя во всех подробностях. Нам удалось открыть бозон Хиггса, когда мы сумели вызвать к жизни после сна длиной почти в 13,8 миллиарда лет их жалкую горстку. Конечно, все эти с таким трудом обретенные бозоны немедленно распались на более легкие частицы, но они оставили безошибочно опознаваемые следы в наших детекторах. Фотографии этих особых распадов собирались, и в тот момент, когда у нас появилась полная уверенность, что следы новых частиц ясно различимы на общем фоне и что иные возможные источники ошибок приняты во внимание, мы объявили миру о своем открытии.

Исследование бесконечно малого, возвращение к жизни вымерших частиц, изучение экзотических, но обычных для новорожденной Вселенной состояний материи – это один из двух возможных путей к пониманию первых мгновений жизни пространства-времени. Второй путь – это супертелескопы, гигантские инструменты, исследующие бесконечно большое, изучающие звезды, галактики и скопления галактик, пытающиеся наблюдать Вселенную буквально целиком. И в этом случае следует помнить, что входящее в формулу Эйнштейна значение скорости света