Главный принцип щитопроходной технологии – это завершение работ с минимальным, насколько это возможно, колебанием окружающих пород, тем самым максимально снижая воздействие на наземные строения и фундаментные коммуникации.
Первоначально метод щитовой проходки применялся с использованием ручной, либо механической силы при проведении землеройных работ с применением сжатого воздуха для создания устойчивости забоя и выемки грунта. Если окружающие породы были крайне текучими, то для укрепления и предотвращения протечек применялся метод цементирования, при котором в условиях мягких земляных пластов могли проводиться работы закрытого типа.
История щитопроходной технологии началась в Великобритании, созрела в Германии и Японии, а затем получила широкое развитие в Китае. С момента появления первой в мире щитопроходной машины в 1825 году, спустя более ста лет научно-исследовательских разработок и эксплуатации, данный метод эволюционировал, и на сегодняшний день широко применяются жидкошламовые проходческие щиты и щиты с компенсацией давления земляных пород. Самым большим преимуществом этих двух видов машин является то, что в процессе проведения землеройных работ предусмотрена возможность стабилизации забоя, таким образом, два из трех основных элементов метода щитовой проходки, а именно стабилизация забоя и выемка грунта, интегрировались в один элемент, тем самым повышая способность адаптироваться к пластам с изменяющимися геологическими условиями, исключая необходимость в проведении дополнительных вспомогательных работ.
2.1.2. Механический анализ производственных работ по методу щитовой проходки
Процесс строительства туннеля щитовым методом – это сложный механический процесс, в ходе которого исходная почва подвергается разрушению, дроблению и последующей трансформации. На грунтовые массы забоя воздействует режущее усилие резцов, установленных на рабочем инструменте щита, прокатывающее и трамбующее усилие, а также удерживающее усилие среды внутри камеры давления. Действующее на грунтовые массы удерживающее усилие снаружи щита почти такое же, как внутри камеры давления. На грунтовые массы в хвостовой зоне щита воздействует сила давления блока синхронной цементации. После того как грунтовые массы подверглись манипуляциям на предыдущих этапах, они будут преобразовываться в течение очень длительного промежутка времени.
В настоящее время наука механического анализа щитопроходческих работ, основываясь на механике сплошной среды, помогла получить множество ценных сведений и получила широкое использование в сфере туннелестроительного проектирования. Однако, вследствие многих неопределенностей в процессе щитовой проходки и неоднородности почвенной среды, между результатами анализа с помощью традиционных методов и фактической ситуацией в ходе строительных работ существует довольно большая разница. Чтобы обеспечить успешное проведение щитопроходческих работ, необходимо объединять данные испытаний и опыт персонала, производящего работы. Вследствие этого необходимо подбирать наиболее оптимальные решения при руководстве работами.
Проходческий щит осуществляет экскавационное продвижение в естественной почвенной массе, формируя туннель, и естественная почва в пределах движения замещается туннельным пространством с облицовочной обделкой. По мере продвижения резцы рабочего органа щита прорезают земельный пласт перед ним, и он посредством выдвижения гидравлических цилиндров, оказывающих давящее усилие на предварительно смонтированную облицовочную обделку, осуществляет движение вперед. При каждом цикле продвижения вперед на ширину одного тюбинга, персонал, оперируя тюбингоукладочной установкой, осуществляет монтаж тюбингов в хвостовой части щита, формируя постоянную опору для туннеля. Во время продвижения вперед зазор между тюбингом и земляным слоем заполняется цементирующей жидкостью, завершая процесс формирования туннеля. В итоге процесс строительства туннеля обычно включает в себя 4 механических этапа (