1) Сравнение проходческого щита с грунтопригрузом и системы привода комбинированной проходческой машины / TВM. Несмотря на то, что система привода комбинированной проходческой машины / TВM оснащена высокой скоростью и высоким крутящим моментом, двухрежимным резцом и т. д., по сравнению с однофункциональным сбалансированным щитом с грунтопригрузом, производительность проходки машины в глинистых, песчаных и булыжных пластах все еще уступает однофункциональному щиту с грунтопригрузом целевой конструкции, например, по предотвращению грязевой корки резца и высокому крутящему моменту для проходки.
По сравнению с ТВМ для твердых пород комбинированные машины для бурения с грунтопригрузом / ТВМ уступают однофункциональным ТВМ по прочности конструкции резца, способу установки инструмента, разрушающей способности инструмента, максимальной скорости привода, а также вибрация главного блока и производительность валков уступают аналогичным показателям однофункционального ТВМ.
Смена режима туннелирования требуется при изменении требований к функции туннелирования. Комбинированные машины для бурения с грунтопригрузом / ТВМ из-за различных функциональных потребностей резцевой головки, улучшенной очистки, сброса шлака и т. д., особенно для двухрежимной защитной конструкции с давлением грунта / TВM малого диаметра, смена режима в туннеле является относительно трудоемким процессом. Как правило, предварительная подготовка персонала, материалов и оборудования требует от 2 до 3 недель, и смена режима должно осуществляться в самостабилизирующихся пластах породы.
2) Комбинированная машина с глинистой водой / ТВМ
Комбинированная машина для проходки туннелей с использованием жидкой глинистой воды / ТВМ может использоваться как в режиме баланса жидкой глинистой воды, так и в режиме однощитовой ТВМ, в которой щит выгружает глинистую воду через грязевую трубу на ленточный конвейер. Комбинированная машина для проходки туннелей с использованием жидкой глинистой воды / ТВМ показана на рис. 1-32, которая использовалась при строительстве туннеля через озеро Лост в Неваде и туннеля Хернандес в США.
Рис. 1-32. Комбинированная машина с глинистой водой / ТВМ
1.4. ТЕХНОЛОГИЧЕСКИЕ ИННОВАЦИИ И РАЗВИТИЕ ПРОХОДЧЕСКИХ ЩИТОВ В КИТАЕ
Китай начал изучать строительство проходческих щитов и методы щитовой проходки с 1953 года. Оглядываясь назад на историю развития технологии проходческих щитов Китая за период, более чем 60 лет, ее можно разделиться на три этапа – период зарождения технологий (1953– 2002 гг.), инновационный период технологий (2003–2008 гг.), период скачка технологий (с 2009 по настоящее время).
1.4.1. Рассвет китайской щитовой технологии
Период 1953–2002 годов был рассветом щитовой технологии в Китае, когда Китай взял на себя обязательство «строить китайские собственные щиты». В 1953 году в угольной шахте Фусинь на северо-востоке Китая был разработан щит, работающий вручную, что позволило написать историю китайских щитов с нуля.
1) Разработка и применение щита ручной раскопки
Разработка и применение щитов в Китае началась в 1953 году, на 128 лет позже чем за рубежом.
В 1953 году на угольной шахте Фуксин в Северо-Восточном Китае был построен дренажный туннель диаметром 6 м с использованием прорытого вручную щита и небольших сборных бетонных блоков – первый туннель, построенный с использованием щитового метода в Китае. В феврале 1962 года туннелестроительная компания Шанхайского городского строительного бюро провела экспериментальное исследование щитов в условиях мягкого грунта в Шанхае. Для проведения буровых испытаний в двух репрезентативных пластах был разработан щит с ручным бурением диаметром 16 м (