В теории архитектуры кибернетика имеет долгую и иногда противоречивую историю. В философию кибернетики встроена концепция, согласно которой целью научного изучения явлений жизни является достижение интеллектуального контроля над ними. Другими словами, кибернетика стремилась достичь абсолютного контроля над предметом. Поскольку кибернетика занимается механикой сложной системы, она оказывает сильное влияние на физические аспекты строительства зданий. Примером этого является строительство Олимпийской деревни для летних Олимпийских игр 1996 года, которое было признано Американским обществом инженеров-строителей самой передовой технологией в архитектуре, поскольку для управления зданиями использовались встроенные компьютерные системы, управляемые данными. Компьютерные системы обеспечивали эффективное удаление отходов, чтобы сэкономить деньги на санитарии. Основные здания были оптимизированы для эффективного энергопотребления и спроектированы таким образом, чтобы можно было легко заменить простые силовые кабели. Это привело к меньшему повреждению зданий в случае пожара. В зданиях были встроены многие устройства и компьютерным управлением. Во многих смыслах Олимпийская деревня является символом утопического кибернетического архитектурного движения.

Биология

Теории человеческого поведения и принятия решений известны сотни лет. Однако только относительно недавно психологи получили представление о факторах, которые способствуют принятию решений людьми, и о том, как на их решения влияют сенсорная, моторная и когнитивная обработка информации. Современная психология изучает влияние этих факторов на людей, чтобы понять, как люди думают, действуют и взаимодействуют друг с другом. Современные открытия в области психологии используют компьютеры для помощи в своих экспериментах. Компьютеры могут моделировать процессы в мозге человека и позволяют исследователям проводить новые эксперименты в этой области.

Революция в молекулярной генетике стала водоразделом для нейробиологов, поскольку молекулярная биология в сочетании с относительно недавними достижениями в области электрохимии и оптогенетики создала множество экспериментальных инструментов для изучения мозга. Это позволило нейробиологам понять функциональную архитектуру и организацию мозга, а также определить роль нейронных сетей в мозге, особенно в познании. Идея нейронных сетей в головном мозге возникла в результате изучения биологической модели нервной системы, в которой клетки были разделены на определенные функционально интегрированные группы, причем группы, обладающие одним и тем же типом функций, имели наиболее сильную взаимосвязь. Благодаря открытию молекулярно-генетических основ функционирования нервной системы, таких как роль факторов транскрипции и белков в формировании нейронной сети, а также биофизики экспрессии генов, появился ряд генетических инструментов для изучения взаимосвязи между молекулярной генетикой нейронных сетей. Сегодня понимают, что нейробиологические механизмы, лежащие в основе познания, являются результатом глобальных сетей мозга, образованных десятками тысяч нейрональных клеток.

Разработки в области нейробиологии включают визуализацию мозга, анализ биоэлектрического импеданса, магнитно-резонансную томографию, функциональную магнитно-резонансную томографию, транскраниальную магнитную стимуляцию и электроэнцефалографию, которые являются одними из наиболее важных инструментов для нейробиологических исследований.

Эти инструменты также играют важную роль в соединении нейронных сетей мозга с корой головного мозга, которая отвечает за наши высшие когнитивные функции, такие как язык, восприятие, память, внимание, мышление, рассуждение и эмоции. Это связь, которую раньше не устанавливали, связывая функциональную архитектуру области мозга с фундаментальной работой этой области.