Таким образом, атомы создают «оболочки» из электронов. Энергетические уровни внутри таких электронных оболочек заполнены, снаружи – пусты, а посередине иногда бывают свободные места. Эта сложная структура из электронов и энергетических уровней определяет размер атома и его способность вступать в реакции и образовывать молекулы. Здесь сразу возникает множество вопросов. Например, почему именно два электрона приходятся на один энергетический уровень? Почему не один или столько, сколько мы захотим? Этого мы еще не знаем. Но трудно переоценить важность сути самого открытия: энергетические уровни различны для одного атома, различны для разных атомов и даже для разных молекул, которые образуются при связи атомов друг с другом. Все это означает, что у нас есть способ определять составные части вещества по косвенным признакам, даже не дотрагиваясь непосредственно до них.
Когда электроны перепрыгивают с одного энергетического уровня на другой, они испускают или поглощают характерное количество энергии в виде фотонов света. Измерением величины этого излучения и определением, для каких атомов характерно то или иное излучение, занимается наука спектроскопия, и именно благодаря этой науке мы знаем, из чего сделаны Солнце, другие звезды и межзвездная пыль. Поскольку допускается существование только нескольких определенных энергетических уровней, могут существовать только вполне определенные скачки энергии. Таким образом, лишь некоторые определенные порции энергии фотона могут быть поглощены или испущены. Из-за этого в спектре появляются либо темные полосы (свет определенной длины проходит сквозь вещество, и эти длины волн фотонов поглощаются), либо светлые (свет испускается веществом при нагревании; например, свет натриевой лампы имеет жёлтую окраску). Желтый цвет, зафиксированный спектрометром, указывает на то, что основным компонентом таких ламп является натрий. Точно так же линии в спектре других веществ позволяют определить, из атомов каких видов состоит исследуемое вещество. Это обстоятельство объясняет характерные частоты света, ответственные за открытие гелия на Солнце.
Электронная структура атомов и молекул – детальная картография земли Атома – была открыта с помощью энергий порядка нескольких сотен или даже тысяч электронвольт (эВ)[21]. Понимание этой структуры имело решающее значение для того, чтобы подтвердить квантовую природу электронов и фотонов, а также выявить, какие элементы присутствуют в звездах и пыли далеких галактик. Это понимание воодушевляет нас и дает информацию для дальнейших исследований. Теория взаимодействия электронов и фотонов – квантовая электродинамика (КЭД) – стала первой частью разрабатываемой стандартной модели физики частиц. Как мы увидим в дальнейшем, точные атомные измерения сыграли важнейшую роль в становлении КЭД.
Земля Атома – отправная точка для нашего путешествия в дальние области физики элементарных частиц. Преодолеть тяготы пути нам поможет квантовая теория, которой мы попутно обзавелись. Следующим этапом нашего путешествия станет уже вошедшее в привычку возвращение в порт Электрон, но на этот раз мы вернемся туда по суше. Если сказать точнее, то мы вернемся даже не в сам порт, а в земли все еще неизвестного нам острова, на побережье которого этот порт расположен. Итак, достигнув южной оконечности земли Атома, мы обнаружили некий мост, а сразу за ним – что оказалось очень кстати – пункт проката автомобилей. Мы тут же пересекли мост, взяли машину и отправились по берегу острова, чтобы исследовать территорию вдали от порта Электрон.